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Ab initio calculation of the spectrum of Feshbach resonances in NaLi + Na collisions
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We present a combined experimental and theoretical study of the spectrum of magnetically tunable Feshbach
resonances in NaLi (a3�+) + Na collisions. In the accompanying paper, J. J. Park, H. Son, Y.-K. Lu, T. Karman,
M. Gronowski, M. Tomza, A. O. Jamison, and W. Ketterle, Phys. Rev. X 13, 031018 (2023), we observe
experimentally 8 and 17 resonances occurring between B = 0 and 1400 G in upper and lower spin-stretched
states, respectively. Here, we perform ab initio calculations of the NaLi + Na interaction potential and describe
in detail the coupled-channel scattering calculations of the Feshbach resonance spectrum. The positions of
the resonances cannot be predicted with realistic uncertainty in the state-of-the-art ab initio potential, but our
calculations yield a typical number of resonances that is in near-quantitative agreement with experiment. We
show that the main coupling mechanism results from spin-rotation and spin-spin couplings in combination
with the anisotropic atom-molecule interaction. The calculations furthermore explain the qualitative difference
between the numbers of resonances in either spin state.
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I. INTRODUCTION

Magnetically tunable resonances have become an in-
dispensable tool for controlling the interactions between
ultracold atoms [1]. Control over the interactions enables
using atoms as quantum simulators to study, for example,
condensed matter physics [2–6]. Feshbach resonances are
also used to associate pairs of ultracold atoms into weakly
bound molecules [7]. These weakly bound molecules can
be transferred coherently to their absolute ground state us-
ing a stimulated Raman adiabatic passage (STIRAP) [8],
which has become a common tool for producing ultra-
cold ground-state molecules [9–12]. Resonances in molecular
collisions could similarly enable the control of contact inter-
actions between molecules, or between molecules and atoms.
This could enable sympathetic cooling of molecules [13],
and the bottom-up construction of ultracold polyatomic
molecules [14]. Furthermore, scattering resonances are in-
credibly sensitive to the details of the interaction potential and
provide an interesting testing ground for theory [15]. In par-
ticular, there is an active debate about the nature of so-called
“sticky collisions” between ultracold molecules [16–18], their
role in collisional losses [19], and what simplified statistical
models can be used to describe these [16,17,20,21]. Obser-
vation of atom-molecule and molecule-molecule resonances
could directly test some of these models by measuring the
“effective” density of states [18,22], the probability of short-
range loss [21,23], and by probing the mechanism of this loss.

Collisional loss also represents a major hurdle in the
observation of Feshbach resonances. The resonance states
correspond to quasibound states of the atom-molecule or
molecule-molecule collision complex. In the presence of col-
lisional loss, however, these states experience decay and the
resonances broaden [21]. In the case of so-called universal
loss [24], which is consistent with many experimental ob-
servations of molecule-molecule [9–12,25–29] loss rates, the
short-range loss becomes complete and the resonances dis-
appear entirely. Universal loss is also observed for some but
not all ultracold molecule-atom collisions [30–33]. For these
reasons it is an open question for which systems scattering
resonances exist.

Recently, scattering resonances were observed in NaK + K
[29], NaLi + Na [34], and even NaLi + NaLi [35] collisions,
but the three systems are very different. The resonances ob-
served in NaK + K could be interpreted as long-range states
that are further split into several resonances by hyperfine
interactions, and which could tentatively be assigned free-
molecule and free-atom quantum numbers [31]. In the case
of collisions between triplet NaLi molecules and Na atoms in
the spin-stretched state, the background loss is much less than
universal. This situation, however, could be unique to triplet
NaLi, which is the lightest bialkali realized that furthermore
has relatively weak interactions with Na in the spin-stretched
state. By contrast, NaLi bimolecular collisions exhibit uni-
versal background loss. Nevertheless, a single resonance was
observed in NaLi + NaLi collisions, though assignment of
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the observed resonance in terms of a stable resonance state is
complicated [35].

Here, we present a combined experimental and theoreti-
cal study of the spectrum of magnetically tunable Feshbach
resonances in NaLi (a3�+) + Na collisions. In the accom-
panying paper we show 8 and 17 resonances occur between
B = 0 and 1400 G in the upper and lower spin-stretched
states, respectively [36]. We perform ab initio calculations
of the NaLi + Na interaction potential, and use these to
perform coupled-channel scattering calculations of the Fesh-
bach resonance spectrum. We show that the positions of the
resonances cannot be predicted with realistic uncertainty in
the state-of-the-art ab initio potential, but that our calculations
can nevertheless confirm the expected number of resonances
in this magnetic field range. Furthermore, we explain the
qualitative difference between the numbers of resonances in
either spin state, and the nature of the coupling mechanism. In
this paper, we describe in detail how these calculations were
performed and also present additional supporting calculations
of the density of states and the effect of hyperfine interactions
on the spectrum of resonances.

II. INTERACTION POTENTIAL

Intermolecular interactions in the triatomic NaLi + Na
system can be formally decomposed into a pairwise additive
two-body part and a pairwise nonadditive three-body part. The
two-body part is the sum of interatomic interaction between
all atomic pairs obtained neglecting the presence of other
atoms. The nonadditive three-body interaction results from
the electron density modification and correlation extending
beyond atomic pairs and can also be understood as the change
of pairwise interactions due to the presence of other atoms.

A. Two-body interactions

We first consider the two-body interactions. The interac-
tion between two alkali-metal atoms A and B depends on the
distance between the atoms and whether the spins are singlet
or triplet coupled, which can be represented as

V̂AB(rAB) = V̄AB(rAB) + ŝA · ŝB�VAB(rAB), (1)

where V̄AB(r) = [3V (T )
AB (r) + V (S)

AB (r)]/4 and �VAB(r) =
V (T )

AB (r) − V (S)
AB (r). The singlet V (S)

AB and triplet V (T )
AB potentials

for NaNa and NaLi are taken from Refs. [37–39]. These
are empirical potentials that reproduce the known molecular
spectroscopy and atom-atom scattering lengths accurately.
The total additive electronic interaction is then computed
for fixed molecular bond length, as a function of the
molecule-atom center-of-mass separation R and the Jacobi
angle θ as

V̂ 2b(R, θ ) =
∑
A<B

V̂AB(rAB), (2)

where the three interatomic distances rAB are obtained as a
function of R and θ and evaluated with Eq. (1) for each pair.
This total additive interaction is represented in a Legendre
expansion convenient for scattering calculations

V̂ 2b(R, θ ) =
∑

L

PL(cos θ ) × [
V (0)

L (R) + ŝ1 · ŝ2V
(12)

L (R)

+ ŝ1 · ŝ3V
(13)

L (R) + ŝ2 · ŝ3V
(23)

L (R)
]
, (3)

computed by Gauss-Legendre quadrature including terms up
to L = 70. The required matrix elements in the channel basis
are given in the Appendix.

B. Nonadditive three-body potential

The nonadditive three-body contribution to the interaction
energy in the triatomic ABC system is computed as

V 3b(R, θ ) = EABC −
∑
A<B

EAB +
∑

A

EA, (4)

where the total energies of the trimer EABC , dimers EAB, and
monomers EA at the trimer geometry (R, θ ) are computed
using a trimer basis set.

First, the total energies and resulting three-body term are
computed using the coupled cluster method [40] with the
full treatment of single and double excitations and estimation
of the connected triples contribution noniteratively by many-
body perturbation theory, CCSD(T) [41]. Next, the correction
to account for the remaining triple excitations in the coupled-
cluster expansion, CCSDT [42], is added. Large Gaussian
basis sets are employed. Thus, all total energies in Eq. (4) are
calculated using

E = EHF
apCV5Z + δECCSD(T)

CBS(Q,5) + δECCSDT
apCVTZ, (5)

where the Hartree-Fock energy, EHF
apCV5Z, is calculated in the

Douglas-Kroll correlation-consistent polarized core-valence
quintuple-ζ quality basis sets, aug-cc-pCV5Z-DK [43]. Next,
the correlation energy at the CCSD(T) level, δECCSD(T)

CBS(Q,5), is
extrapolated to the complete basis set (CBS) limit with the
two-point formula [44] and the aug-cc-pCVQZ-DK and aug-
cc-pCV5Z-DK basis sets. Relativistic effects are included
in those calculations with the eXact-2-Component (X2C)
Hamiltonian [45]. Finally, the full triples correction δECCSDT

apCVTZ
defined as a difference between CCSDT and CCSD(T) results
is calculated using the aug-cc-pCVTZ basis sets. We correlate
only the three valence electrons in the CCSDT calculations,
which in the case of the NaLi + Na system is equivalent to
reaching the full configuration interaction (FCI) quality for
valence electrons.

The CCSD(T) calculations are performed with the MOLPRO

package of ab initio programs [46,47], while the CCSDT
results are obtained with the MRCC2019 software [48,49]. The
Legendre expansion of the nonadditive three-body interaction
potential is available in the Supplemental Material [50].

The nonadditive three-body interaction potential is com-
puted for the spin-stretched quartet state where the coupled-
cluster method can be applied. We subsequently assume the
nonadditive part of the interaction is spin-independent and
use it for the doublet states as well. This approximation may
be justified by much higher importance of the three-body
interaction for the spin-stretched state where it is larger than
the two-body contribution, while deeply bound doublet states
are strongly dominated by two-body interactions. Addition-
ally, the decomposition into additive and nonadditive parts is
ambiguous for the relevant low-spin states. Finally, later we
will show that the details of doublet states are less important
for resonance prediction. We note that the spin dependence of
the two-body interactions is fully accounted for.
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C. Electron spin-spin interaction

The electron spin-spin interaction can originate either from
direct spin-spin magnetic dipole-dipole interaction or indirect
interaction in the second-order of perturbation theory medi-
ated by spin-orbit coupling. The total effective Hamiltonian
for the electron spin-spin interaction reads as

ĤSS = Ŝ
T

DŜ, (6)

where Ŝ represents spin of the system and D is 3 × 3 matrix.
In the magnetic axis frame the D become diagonal, and the
effective Hamiltonian can be parameterized by DSS and ESS

constants [51] as

ĤSS = DSS
[
Ŝ2

z − 1
3 S(S + 1)

] + ESS
[
Ŝ2

x − Ŝ2
y

]
, (7)

where Ŝx is the x component of the spin operator Ŝ with
respect to the magnetic axis system and similarly for y and z.
The magnetic axes depend on the geometry of the NaLi + Na
complex. In the case of linear configurations, the z axis coin-
cides with the NaLi axis. In the global minima of the potential
energy surface, the z is perpendicular to the plane defined by
atoms, whereas the angle between y and the NaLi axis is about
30 degrees. Preliminary computations with multireference
configuration interaction methods show that the spin-orbit
interaction plays a minor role here and ESS is orders of
magnitude smaller than DSS. Thus, we neglect the spin-orbit
interaction and include only the two-electron spin-spin di-
rect magnetic interaction. We use the multireference-averaged
quadratic coupled-cluster (MR-AQCC) [52] electronic wave
function as implemented [53] in ORCA [54,55]. We describe
scalar relativistic effects by the Douglass-Kroll-Hess (DKH)
Hamiltonian [56] and include the picture-change effects [57].
The aug-cc-pCVTZ-DK basis sets are used. The components
of the D matrix, the coupling coefficient DSS, and ESS/DSS

ratio are available in the Supplemental Material [50].
We find that the order of magnitude of the isotropic cou-

pling coefficient DSS is conserved for most intermonomer
configurations available during low-energy NaLi + Na colli-
sion. In the scattering calculations reported below, we neglect
the interaction-induced variation of the spin-spin coupling.
This means the modification of the spin-spin coupling in a
NaLi molecule due to its interaction with a Na atom is omit-
ted, but the geometry dependence of the spin-spin coupling
in a NaLi molecule on its orientation within a NaLi + Na
complex is included.

D. Geometry and interpolation

We use Jacobi coordinates to parametrize the geometry
of the NaLi + Na complex. The interatomic separation in
NaLi is fixed at the vibrationally averaged interatomic dis-
tance of 9.139 a0 for the ground state of NaLi (3�+) [15]. We
perform the computations for more than 20 values of the atom-
molecule separation R. The cosine of angle (xi = cos(θi ), i ∈
{0, 1, 2, . . . , 13, 14}) are selected from the roots of the 15th-
order Legendre polynomial and are ordered as xi > xi+1. We
independently calculate the nonadditive three-body contribu-
tion [V 3b(R, θ )] and electron spin-spin interaction coupling
[D(R, θ )] for each combination of geometric parameters. For
each distance, we interpolate the three-body interaction term

FIG. 1. Interaction potentials for the NaLi + Na collision com-
plex. The potentials are shown as a function of R, the center-of-mass
distance between the atom and molecule, and θ the Jacobi angle
between the orientation of the molecule and the approach of the
atom, with θ = 0 corresponding to Na-NaLi and θ = 180◦ to Na-
LiNa. The molecular bond length is fixed at the triplet equilibrium
bond length r = 8.8 a0. (a) High-spin quartet S = 3/2 potential.
(b) Low-spin doublet S = 1/2 potential. In principle, there are two
doublet potentials that can have an avoided crossing. What is shown
here is the doublet potential for a pure triplet NaLi molecule, s = 1.

and the spin-spin interaction coupling constants by Legendre
polynomials [58]. We determine Legendre expansion coeffi-
cients using the Gauss-Legendre quadrature as

V (3b)
L (R) = (2L + 1)

n−1∑
i=0

wiPL(xi )V
3b(R, θi ), (8)

and similar for the spin-spin coupling, and wi are the quadra-
ture weights. For use in scattering calculations, the radial
dependence of the expansion coefficients is interpolated using
the reproducing kernel Hilbert space method [59].

E. Accuracy

The global minimum of the molecule-atom interaction po-
tential for the quartet state of NaLi + Na with the internuclear
distance in NaLi fixed at 9.139 a0 occurs at Re = 7.48 a0 and
θe = 117.3◦ with the well depth of De = 812.5 cm−1 (see
Fig. 1). At this equilibrium geometry two-body and three-
body interactions contribute 230.7 cm−1 and 581.8 cm−1 to
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the binding energy, respectively. The CCSD(T) method re-
produces 555.0 cm−1 (95%) of the nonadditive part and
the CCSDT correction accounts for 26.8 cm−1. The final
uncertainty of the calculated nonadditive three-body poten-
tial is about 17 cm−1 (3 %) at the global minimum of the
potential energy surface and results mainly from the in-
completeness of the basis set in the CCSD(T) (∼5 cm−1)
and CCSDT (∼8 cm−1) computations, and the lack of core-
electron correlation at the CCSDT level (∼3 cm−1). We
estimate the magnitude of the neglected contribution of
core and core-valence correlation beyond CCSD(T) level by
running all-electron CCSDT calculations with the virtual one-
electron space truncated by 20% [60].

Our calculations show that the three-body term is larger
than the two-body one and predominantly attractive. Conse-
quently, the intermonomer NaLi distance is shorter than the
intramolecular one. The interatomic distances in the complex
are closer to the classical turning point of diatomic potentials
than to their minima. The repulsive part of the two-body po-
tential is less accurate than its long-range part. This introduces
additional uncertainty to the overall potential, which can be
as high as 16 cm−1 (an additional uncertainty of ∼3 cm−1

of the three-body interaction), estimated from the difference
between an experimental two-body potential for Na2 [61] and
a highly accurate theoretical potential for NaLi [15].

The native uncertainty of our state-of-the-art electronic
calculation of the three-body term is relatively small, although
still too large to predict molecular scattering lengths. Ad-
ditional uncertainty is introduced by using the rigid rotor
approximation to describe NaLi within NaLi + Na. This ap-
proximation works very well for van der Waals complexes
of deeply bound molecules, but for high-spin weakly bound
alkali-metal systems may result in nonnegligible errors [62].
Our calculations show that the global equilibrium geometry
for NaLi + Na with relaxed distance in NaLi has isosce-
les triangular symmetry and internuclear distances smaller
by around 20% than in the diatomic molecules due to large
three-body forces, the magnitude of which monotonically in-
creases with decreasing atom-molecule separation. To reflect
the errors related to the difference in three-body interaction at
the global minimum and the minimum within the rigid rotor
approximation used, as well as the increased uncertainty of the
two-body interactions at these shorter interatomic distances,
we use a more conservative estimate of the uncertainty of the
three-body interaction of ±5% in the remainder of this paper.

III. SCATTERING CALCULATIONS

A. Basis set and Hamiltonian

In our coupled-channels calculations the scattering wave
function is expanded in a basis of fully coupled channel func-
tions of the form

|(NL)J (s s3)S;JM〉
=

∑
MJ ,MS

〈JMJSMS|JM〉|(NL)JMJ〉|(s s3)SMS〉, (9)

where 〈 j1m1 j2m2| jm〉 is a Clebsch-Gordan coefficient. The
quantum number N represents the rotational angular momen-
tum of the NaLi molecule, and L the angular momentum

associated with the end-over-end rotation of the atom and
molecule about one another, which are Clebsch-Gordan cou-
pled to a total mechanical angular momentum J with B-field
projection MJ . Similarly, s denotes the molecular electronic
spin resultant from coupling atomic spins s1 and s2 within
NaLi, whereas s3 is the electronic spin of Na and S the total
electronic spin with B-field projection MS . In the coupled
basis, J and S are subsequently coupled to a total angular
momentum J with magnetic-field projection M = MJ + MS .
Nuclear spin is initially not taken into account, see Sec. III G.
We assume the molecular bond length fixed at the triplet
equilibrium position.

The total angular momentum projection along the magnetic
field axis M = MJ + MS is strictly conserved. For large-
enough magnetic field MS becomes a good quantum number,
and therefore also MJ = M − MS is good. The Na atomic
spin is s3 = 1/2 throughout. Due to the large singlet-triplet
splitting in the NaLi molecule, s = 0 or 1 is also a good
quantum number. For a separated atom and molecule, ms and
m3 would separately become good quantum numbers, but at
chemically relevant distances the exchange splitting between
the doublet and quartet interaction potentials is dominant such
that S = 1/2 and 3/2 are good quantum numbers. Hence,
we can effectively consider each |SMS〉 state separately,
with only perturbatively weak couplings between them. For
each of these spin channels, there are strong and anisotropic
interactions that couple different N and L channels, but
conserve J and MJ . The initial channel corresponds to s-
wave collisions in the spin-stretched rotational ground state
|(NL)JMJ〉|SMS〉 = |(00)00〉|3/2 3/2〉 for the low-field seek-
ing upper spin-stretched state and |(00)00〉|3/2, −3/2〉 for
the high-field seeking lower spin-stretched state, respectively.

In our coupled-channels calculations we include the elec-
tronic interaction described in Sec. II,

V̂ (R, θ ) =
∑

L

PL(cos θ ) × [
V (0)

L (R) + ŝ1 · ŝ2V
(12)

L (R)

+ ŝ1 · ŝ3V
(13)

L (R) + ŝ2 · ŝ3V
(23)

L (R) + V (3b)
L (R)

]
,

(10)

the Zeeman interaction with the magnetic field

ĤZeeman = μBgeB(ŝ1,z + ŝ2,z + ŝ3,z ), (11)

the magnetic dipole-dipole interaction

V̂magn.dip = −
√

30
(μBgeα)2

R3
[[ŝ ⊗ ŝ3](2) ⊗ C(2)(R̂)](0)

0 , (12)

and the spin-rotation

Ĥspin−rotation = γsN̂ · ŝ, (13)

and spin-spin couplings

Ĥspin−spin = λs

√
30/3[[ŝ ⊗ ŝ](2) ⊗ C(2)(r̂NaLi)]

(0)
0 , (14)

where [Â ⊗ B̂](k)
q indicates a tensor product and C(2)(R̂) indi-

cates spherical harmonics, see the Appendix. The spin-spin
coupling parameter λs = 0.0189 cm−1 is computed here,
whereas for the spin-rotation coupling we use the γs =
0.005 cm−1 upper limit estimated in Ref. [15]. The reader is
referred to the Appendix for a full description of the Hamilto-
nian and for matrix elements in the channel basis.
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The spin-rotation coupling γsN̂ · ŝ and spin-spin coupling
λs[(ŝ · r̂NaLi)(ŝ · r̂NaLi) − 1

3 ŝ2] play an important role here as
these are spin-dependent couplings that are not diagonal in
S and MS . Losses by Zeeman relaxation or transitions to
the chemically reactive doublet potential must involve these
couplings. It is worth noting that if the electronic interaction
were isotropic, i.e., independent of the relative orientation
of the atom and molecule, these spin-dependent couplings
would not be enough to lead to Zeeman relaxation. However,
after accounting for the spin-rotation and spin-spin coupling,
molecular eigenstates in different Zeeman levels have dif-
ferent rotational-state decompositions and hence are coupled
by the anisotropic part of the electronic interaction. That is,
physically, the strong anisotropic electronic interaction can
reorient the molecule which effectively flips the electronic
spin because the spin is coupled to the molecular axis by
spin-rotation and spin-spin coupling. The role of anisotropic
interactions implies that transitions occur at short range and
cannot be described by simpler models based on isotropic
long-range R−6 interactions alone [31].

After having described the atom-molecule interactions, ap-
proximately good quantum numbers, and the critical role of
various coupling mechanisms, we continue by performing full
quantum mechanical coupled-channels calculations. For com-
putational tractability we will start out by ignoring hyperfine
and vibrational degrees of freedom. By ignoring the vibra-
tional coordinate of the molecule and fixing the molecular
bond length to the triplet NaLi equilibrium bond length, our
model cannot directly describe chemical reactions. The only
energetically accessible products are to form singlet NaLi or
Na2 molecules. Chemical reactions will occur on the low-spin
potential. In our coupled-channels calculations, we model
these by imposing an absorbing boundary condition at Rmin =
4.5 a0, which can be reached on the low-spin potential, but not
on the high-spin potential which is highly repulsive at these
short distances, see Fig. 1. This choice seems arbitrary but it
does not affect the results as long as the boundary condition
is imposed in a region where the high-spin potential is highly
repulsive and simultaneously the low-spin potential is strongly
attractive. Any flux that reaches this region in the low-spin
state will continue classically to smaller R, such that it does
not matter where exactly in this region one matches to the
absorbing boundary condition. We confirm this numerically
for Rmin between 4 and 4.5 a0.

B. Cross sections and rate coefficients

We solve the coupled-channels equations numerically us-
ing the renormalized Numerov propagator. Using the method
in Ref. [63], and described in more detail in Ref. [64], we
match to reactive boundary conditions at short range and the
usual scattering boundary conditions at long range. Again, the
short-range boundary condition is imposed at Rmin = 4.5 a0,
a separation that can be reached only on the low-spin potential
and effectively models chemical reactions. This procedure
yields an “inelastic” S matrix, S(LR) and a “reactive” S matrix
S(SR). The elements of the inelastic S matrix, S(LR)

f ,L′;i,L , describe
the amplitudes for scattering from an initial state i and partial
wave L, to a final state f and partial wave L′. The elements of
the reactive S matrix, S(SR)

r;i,L describe scattering from an initial

state i and partial wave L into a reactive channel r at short
range. The reactive channels are determined by diagonalizing
the Hamiltonian excluding radial kinetic energy at the short-
range matching point. From the S matrices one can determine
the elastic cross section

σ elastic = π

k2

∑
L,L′

∣∣δL,L′ − S(LR)
i,L′;i,L

∣∣2
, (15)

where i is the initial state and k = h̄−1√2μE is the intial
wave number. From the S matrices one can also determine
the inelastic rate coefficient

β (inelastic) = π

μk

∑
L,L′, f 
=i

∣∣S(LR)
f ,L′;i,L

∣∣2
, (16)

the rate coefficient for loss at short range

β (short) = π

μk

∑
L,r

∣∣S(SR)
r;i,L

∣∣2
, (17)

and we define a total loss rate coefficient, β (loss) = β (inelastic) +
β (short). Both the elastic cross section and the rate coefficients
are energy independent for energies well below the van der
Waals energy which is in the order of 500 µK for NaLi + Na.
We computed the cross sections and loss-rate coefficients at a
single collision energy of 4 µK.

C. Convergence

First we consider convergence of the calculation with
Jmax, the highest value of J included in the basis set. As
explained above, we can essentially consider each spin chan-
nel |SMS〉 independently with only perturbative couplings
between them, and within each spin level, we can consider
J and MJ to be good quantum numbers. Spin-rotation cou-
pling has the selection rules �J = 0 → 1 and |�MS| � 1.
Spin-spin coupling has the selection rules �J = 0 → 2 and
|�MS| � 2. Hence, if these spin-dependent couplings act
only perturbatively we expect cross sections do not change
by including functions with J = 3 or higher, and that cross
sections scale quadratically in the spin-rotation and spin-
spin coupling strengths. This is exactly what we observe in
Fig. 2(a). The inclusion of functions with J = 3 does not
affect the cross sections (dots), and the cross sections scale
perturbatively with the spin-rotation and spin-spin coupling
strengths (crosses). The contribution of the magnetic dipolar
interaction between the atomic and molecular magnetic mo-
ment is far smaller and we discuss it in less detail for this
reason, although it is included in the calculation. Finally we
note that the mechanism responsible for the loss rates requires
anisotropic electronic interactions, but the anisotropy is not
perturbatively weak.

The convergence of the calculation with Nmax for fixed
Jmax = 1 is shown in Fig. 2(b). The expectation is that the
calculation converges when all locally open channels are in-
cluded, i.e., when the excitation energy of channels that are
excluded are all higher than the depth of the interaction po-
tential [65–67]. If we estimate the required Nmax based on the
depth of the spin-stretch potential of 800 cm−1, one would ex-
pect the calculation to converge with Nmax ≈ 70. Instead, we
see the calculation converges with much higher Nmax = 350.
The reason for this appears to be that these higher rotational
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FIG. 2. Convergence of the coupled-channels calculations with
truncation of the basis set. (a) Calculation with fixed Nmax = 20.
Cross sections converge with Jmax = 2. When the basis is truncated at
Jmax = 1, the cross sections scale quadratically with the spin-rotation
coupling constant γs. This is demonstrated by agreement with the
crosses which show one-quarter of the cross section obtained by
scaling γs up by a factor of 2. When the basis is truncated at Jmax = 2,
spin-spin coupling contributes and the cross section scales perturba-
tively with both coupling constants (crosses). Spin-spin coupling is
typically dominant, but not by a large factor so both mechanisms
contribute. Magnetic dipole-dipole coupling does not play an impor-
tant role. (b) Calculation with fixed Jmax = 1 The scattering cross
section can be converged with Nmax, but requires an impractically
large basis set. (c) Calculation with fixed Jmax = 2 The scattering
cross section is not converged with Nmax, but the density and typical
width of resonances are not strongly dependent on Nmax.

FIG. 3. Dependence of loss rates on scaling of three-body in-
teractions. Loss rates as a function of B field and scaling of the
three-body interaction by a factor 1 + λ for Nmax = 20, shown for the
upper stretched state. This shows that due to the uncertainty of λ of
at least several percent, the background loss and resonance positions
are undetermined. Several B-independent resonances are observed,
where the λ scaling tunes the initial spin-stretched potential such that
it supports a resonance, i.e., a bound state near zero energy. Hence,
prediction of resonance positions requires knowledge of the interac-
tion potentials to an accuracy that cannot realistically be achieved by
ab initio calculations.

channels continue to contribute locally open channels in the
low-spin state that affect the background scattering length.

As we have seen, converging the scattering calculation
requires including also functions with J = 2. Scattering cal-
culations for basis sets truncated at Nmax = 350 and Jmax = 2
become prohibitively computer intensive. Fortunately, the typ-
ical number of resonances appears to converge more rapidly
with Nmax and can be predicted with much lower truncation of
N . Figure 2(c) shows loss rates computed with various Nmax

up to 30 for fixed Jmax = 2. We will come back to conver-
gence of the typical density of resonances after discussing the
dependence on the interaction potential.

Figure 3 shows the sensitivity of the scattering rates to
the interaction potential, parameterized by λ. Here, we scale
by a factor of 1 + λ the nonadditive three-body part of the
interaction potential, i.e., the part that is computed ab initio
and is uncertain up to an estimated 3% within the rigid rotor
approximation for NaLi, and considerably larger when this
approximation is relaxed, see Sec. II E. Figure 3 is computed
with Jmax = 2 and Nmax = 20. By modifying the three-body
interaction by less than 10−4, we find that the resonances are
unaffected. By modifying the potential by about 10−3, we find
that the resonances start to shift such that, realistically, their
positions are completely undetermined. When the scaling of
the potential is at the level of several percents, we find that
horizontal B-field independent resonances appear. This occurs
when the potential is scaled to support a resonance near zero
collision energy for the initial Zeeman level, which is there-
fore not tuned by the magnetic field. Therefore, with realistic
uncertainties in the three-body part of the interaction and the
rigid rotor approximation, both the position of magnetically
tunable resonances and the background scattering length are
completely undetermined, but we can still draw probabilistic
conclusions about a typical range of values for the scattering
length.
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FIG. 4. Spin dependence of three-body interactions. Loss rates
are shown as a function of B field and scalings of the interactions
potential. Calculations are done with Nmax = 6, which artificially
reduces the number of resonances compared to Fig. 3. (a) The
spin-independent three-body interaction is scaled by 1 + λ. In this
case, all resonance positions depend on the scaling of the potential,
the background loss rate varies strongly, and new B-independent
resonances appear by scaling the initial-state potential such that
supports a bound state near zero energy. (b) The spin splitting is
scaled by 1 + λ, while the spin-stretched potential is kept fixed.
Therefore, only the doublet potential is varied. The resonances near
150, 350, 1150, and 1250 G are independent of the scaling of the
low-spin potentials, i.e., they are completely supported by the nonre-
active spin-stretched potential. The feature just above 1000 G has
a weak dependence on the scaling of the doublet potentials, and
several broader features such as that around 500 G have a stronger
dependence.

Figure 4 shows a similar “λ scan,” but now for Nmax = 6
which artificially reduces the density of resonances somewhat
and produces a more sparse figure. In Fig. 4(a) we scale the
nonadditive three-body part of the interaction potential for
both the high-spin and the low-spin potential, as before. In
Fig. 4(b), by contrast, we assume this uncertainty is entirely
in the low-spin potential, and we keep the high-spin potential
constant. In this case, we no longer observe horizontal B-field
resonances as these are supported by the initial top Zeeman
energy level, which is a high-spin state. We find that several
of the resonances are now completely independent of the
scaling of the low-spin potential up to λ = 0.1. This indicates
the resonances are supported by the nonreactive high-spin
potential. When the scaling of the low-spin potential reaches

the percent level, coupling to the low-spin state starts to affect
the collision rate, especially for the broader features.

The analysis above shows that the resonances are sup-
ported by the high-spin potential and that their positions are
sensitive to 0.1% uncertainty in the nonadditive three-body
part of the interaction potential. This means that the ab initio
prediction of the resonance positions is beyond the capability
of current state-of-the-art theory. In addition to highly accu-
rate atom-molecule interactions, the quantitative prediction
of resonance positions would require converged coupled-
channels calculations that also fully account for hyperfine,
molecular vibrations and chemical reactions. This is not at-
tempted here, and instead we interpret only the typical number
of resonances, their widths, and coupling mechanisms.

D. Background elastic and inelastic scattering

Next we consider interaction potentials obtained by scal-
ing the nonadditive three-body interactions by 1 + λ with λ

between −0.1 and +0.1, on the order of the uncertainty in
the interaction potential. We consider each of these Hamil-
tonians statistically independent realizations of the physical
NaLi + Na system. By performing scattering calculations for
these different realizations, we gather statistics about the num-
ber of resonances and their widths.

We first consider the nonresonant background. Figure 5
shows the dependence of the elastic cross section and loss-rate
coefficient on scaling of the nonadditive three-body interac-
tion by 1 + λ at a fixed magnetic field B = 1500 G, Nmax =
20. These calculations are performed for three initial states;
the top stretched state where the molecular electronic spin
projection ms = 1 and the atomic electronic spin projection
m3 = 1/2, the bottom stretched state where ms = −1 and
m3 = −1/2, and the nonstretched state ms = 1, m3 = −1/2.
The elastic cross sections are nearly identical in the two
stretched states and different but of the same order in the non-
stretched initial state. For the loss-rate coefficient, the typical
behavior is also that the cross sections are similar between the
two stretched states, while the differences at fixed λ can be
as large as an order of magnitude. For the nonstretched initial
state the loss-rate coefficient is significantly larger. This can
be understood as follows. For nonstretched states the collision
can directly proceed on the reactive potential and lead to
loss. For stretched states, the initial potential is nonreactive
such that loss processes require a spin flip, which is unlikely
since it is perturbative in the weak spin-spin and spin-rotation
coupling, as we see above.

In Fig. 6 we show again the effect of scaling of the nonaddi-
tive three-body interaction by 1 + λ, but ordered by increasing
cross section and loss rate. We follow the approach of Morita
et al. [66] and sample λ uniformly and sort the resulting cross
section and loss rate by increasing magnitude. The resulting
distributions of cross sections and loss-rate coefficients are
interpreted as their cumulative probability distribution [66].
Figure 6(a) shows that elastic cross sections, for which all
cumulative probability distributions are similar and agree
closely with the expected distribution for a R−6 potential [68],
shown as the black markers. This distribution is character-
ized by a mean scattering length ā = 0.47799(2μC6/h̄)1/4 ≈
52 a0. The experimentally measured scattering length is
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FIG. 5. Cross section and rated as a function of λ scaling. (a) The
elastic collision cross section obtained by scaling the nonadditive
three-body interaction by 1 + λ at a fixed magnetic field B = 1500
G. Different colors correspond to different spin states, |sms〉|s3m3〉, as
indicated. (b) Loss rate coefficients as a function λ scaling for fixed
B = 1500 G.

260 a0, the corresponding elastic cross section is larger than
one might expect.

Figure 6(b) shows the cumulative probability distribution
of the loss-rate coefficient. The two spin-stretched states show
a similar distribution, whereas the typical loss rate is much
higher in the nonstretched state, as observed before. Similar
probability distributions are obtained with Nmax = 10 and 20.
In the spin-stretched states, the background loss rate is likely
to lie between 10−13 and a few 10−12 cm3/s. Experimentally, a
typical background loss rate of 5 × 10−12 cm3/s is observed,
which is on the higher end of this distribution function, but
not in disagreement with it.

In Fig. 6(c), we consider the background ratio of elastic-
to-inelastic collisions γ . We compute the ratio of elastic-to-
inelastic collisions as

γ = σ (elastic)〈v〉
β (loss)

, (18)
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FIG. 7. Correlation of elastic and inelastic cross sections ob-
tained for various λ scaling and magnetic field. For each spin state,
there exists a positive correlation between the magnitudes of the
elastic cross section and the loss rate coefficient.

where 〈v〉 is the thermally averaged speed at T = 2 µK [13],
and we take for the elastic cross section 4πa2 where
a = 260 a0 is the measured elastic cross section. The
resulting ratio of elastic-to-inelastic collisions is likely
between 100 and 1000 in the spin-stretched states, in agree-
ment with the experimental value of 300 [13].

In Fig. 7 we consider the correlation between the elas-
tic cross sections and loss rate coefficients obtained above.
We observe that, again, the loss rate is systematically higher
for the nonstretched initial state than for the upper or lower
stretched states. For each spin state, there exists a posi-
tive correlation between the magnitudes of the elastic cross
section and the loss-rate coefficient. Larger elastic cross
sections are typically accompanied by larger loss-rate co-
efficients. This partially explains the underestimate of the
loss-rate coefficient when compared to experiment, observed
in the companion paper [36], since the experimental elastic
cross section is also substantially higher than expected, as
discussed above [13].

E. Density of resonances

Next, we compare the typical number of resonances to the
density of states of the spin-stretched NaLi + Na collision
complex. We investigate this by scanning the loss-rate coef-
ficient as a function of magnetic field for a fixed value of
λ, that is, the same way the resonances are observed exper-
imentally [36]. We note that efficient methods for locating
resonances in scattering calculations also exist [69,70]. Fig-
ure 8 shows typical magnetic field scans for Nmax = 2, 10,
and 30 for both the top and bottom spin-stretched states. The
density of resonances increases with Nmax and is higher for the
lower spin-stretched state than it is for the upper one.

To explain the observed number of resonances, we cal-
culate their density of states. Again, the resonances are
supported by the spin-stretched interaction potential, and the
magnetically tunable resonances correspond to Zeeman sub-
states that are different from the initial state. This means
each resonance can be assigned total electron spin S, MS

quantum numbers. Spin is coupled to the spatial degrees of
freedom perturbatively through spin-spin and spin-rotation
coupling. This means we can assign each state total me-
chanical angular momentum J , MJ , and the spin-rotation and
spin-spin selection rules tell us which values of these nearly
good quantum numbers contribute. Spin-rotation coupling is
rank-1 in the spin and spatial degrees of freedom and couples
to states with J = 1 and |�MS| � 1. The density of such
states is determined by the J = 1 density of states on the
spin-stretched potential. The total number of bound states
below energy E can be computed quasiclassically using a
phase-space integral [18]. We determine the total number of
resonances expected as the total number of bound states less
than the Zeeman energy shift for �MS = 1 below threshold.
Spin-spin coupling is rank-2 in the spin and spatial degrees
of freedom and couples to J = 2 and |�MS| � 2 states. We
similarly determine the number of resonances by computing
the number of J = 2 states bound by less than the Zeeman
shifts for �MS = 1 and 2.

We computed the total numbers of bound states using the
phase-space integrals of Ref. [18]

N (3D) = (2J + 1)
gparity8π

√
2m2

NamLi

3h3(2mNa + mLi)

×
∫∫∫

rR√
μR2 + μNaLir2

[E − V (q)]3/2 dr dR dθ,

(19)

as well as the number of bound states for the NaLi vibrational
coordinate r = re fixed at the equilibrium distance

N (2D) = (2J + 1)
gparity2πm2

NamLi

h2(2mNa + mLi)
√

μNaLi

×
∫∫

rR√
μR2 + μNaLir2

[E − V (q)] dR dθ, (20)

where q = {R, r, θ} are the Jacobi coordinates, V (q) is the in-
teraction potential, mx are the atomic masses, and gparity = 1/2
is a factor that accounts for parity conservation. From this
we find that we should expect to encounter approximately 14
Feshbach resonances when excluding the vibrational coordi-
nate. This is a useful reference for the scattering calculations,
where the vibrational coordinate is fixed. When vibrations
are accounted for, the number of resonances increases from
14 to 21. Hence, the NaLi molecular vibrations contribute
significantly to the density of states of the complex, but
not by orders of magnitude. Hence a large fraction of the
resonances corresponds to NaLi in the vibrational ground
state, justifying freezing the vibrational coordinate in our
scattering calculations. Figure 9(a) shows the quasiclassical
density of resonances as a function of Rmax, the upper in-
tegration limit used in evaluating Eqs. (19) and (20). This
shows that the resonances are supported by atom-molecule
distances up to approximately 40 a0, which is consider-
ably shorter than the range of van der Waals interactions
R6 = (2μC6)1/4 ≈ 109 a0 in the system, suggesting that, in
some sense, the resonances are of short-range nature. Nev-
ertheless, at atom-molecule distances around 40 a0 the elec-
tronic interaction is close to its R−6 asymptotic form, and the
vast majority of the density of states is hence supported by the
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FIG. 8. Representative magnetic field scans for different basis set truncation. The figure shows representative magnetic-field scans of the
collisional loss-rate coefficient. Different panels correspond to truncation of the basis set at Nmax = 2, 10, 30, as indicated. The left (right) hand
column shows results for the upper (lower) spin-stretched state.

van der Waals potential. This was previously also argued for
NaK + K collisions [31], and may more generally be true
of atom + molecule collisions [71]. Finally, we will see that
the coupling mechanism for these resonances involves the
anisotropy of the atom + molecule interaction, and hence this
cannot be understood in terms of the long-range interaction
which is isotropic for a molecule in its rotational ground state.

Because the density of states increases with 2J + 1 and
because for J = 2 resonances can occur with both |�MS| = 1
and 2, the typical density of resonances for J = 2 is a factor
of 5 larger than for J = 1. Hence we can conclude that most

of the resonances observed, approximately five out of six
resonances, can be assigned J = 2 and are due to spin-spin
coupling.

We also compute the density of states quantum me-
chanically by using the same channel basis as used in the
scattering calculations. This is useful for a direct comparison
to the scattering calculations. To this end, we first com-
pute adiabatic potential energy curves by diagonalizing the
Hamiltonian excluding radial kinetic energy at every grid
point. On each adiabatic potential curve, we compute bound-
state wave functions using sinc-function discrete variable
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FIG. 9. Number of resonances. The plot shows the expected
number of resonances between 0 and 1500 G from (a) quasiclassical
phase-integrals Eqs. (19) and (20) as a function of the maximum
molecule-atom center-of-mass separation Rmax up to which the in-
tegrals are evaluated and (b) quantum mechanical calculations of
bound states on each adiabatic potential energy curve, as a function
of Nmax that truncates the channel basis set.

representation [72]. We record the number of bound states
below the initial-state threshold. We repeat this at both ends
of the magnetic field range, and the difference in the number
of bound states provides an estimate for the number of reso-
nances. The results are shown in Fig. 9(b). As can be seen, the
total number of resonances increases with Nmax truncation of
the basis set and converges around Nmax = 30. At Nmax = 30
the highest adiabatic potentials for the spin-stretched state no
longer support bound states, thus the typical number of reso-
nances converges, although the background scattering length
does not converge until much higher Nmax due to the stronger
interactions in the low-spin states. The total number of reso-
nances is close to the quasiclassical estimate, but not in perfect
agreement with it due to the light masses and relatively weak
interactions in the spin-stretched state. The total number of
resonances matches observations for a typical B-field scan in
the lower spin-stretched state. However, in the upper spin-
stretched state we find a similar density of states, although
typically a much lower number of resonances is observed.

F. Missing resonances in the upper spin-stretched state

One might expect that the higher number of resonances in
the lower spin-stretched state comes from quasibound states

in the Zeeman-excited N = 0 states. However, this would be
reflected in a higher density of states for the lower stretched
state in the calculation above. What happens is not that the
total number of states is higher for the lower state, but rather
that we do not observe every state as a resonance in the
upper spin-stretched state. This is caused by fast decay of
some of the resonances to the lower-lying Zeeman levels. This
is illustrated in Fig. 10, which shows typical B-field scans
from a calculation that excludes noninitial Zeeman states in
N = 0. In the case of the lower stretched state, the typical
number of resonances is not reduced by omitting the excited
Zeeman levels, i.e., these do not cause the higher number of
resonances. In the case of the upper stretched state, the typical
number of resonances is increased by omitting the lower-lying
Zeeman states. Some of these resonances were previously
not visible due to fast loss to the lower-lying Zeeman
states.

Loss to lower-lying Zeeman states with N = 0 can occur
only via spin-spin coupling. Spin-rotation coupling cannot si-
multaneously fulfill the parity selection rule and the selection
rule �J = 1. The argument is as follows. In the rotational
ground state N = 0, the orbital and total mechanical angular
momentum are equal, J = L. For J = 1 this means that all
levels in the rotational ground state have L = 1, and hence
odd parity. Since the parity of N + L is conserved, these
inelastic exit channels are inaccessible. Note that spin-rotation
coupling can lead to resonances and chemical loss since, in
these cases, N is changing.

Figure 11 shows once more typical B-field scans, but now
including J = 0, 1 states only. This artificially removes the
contribution of the spin-spin interaction, which couples to
J = 2 states. Therefore, no decay to lower Zeeman states with
N = 0 is possible. This removes the effect discussed pre-
viously where fast inelastic scattering to lower Zeeman
states renders fewer resonances observable in the upper
spin-stretched state. The qualitative differences between the
upper and lower spin-stretched states occur only for J = 2
resonances, are attributed to spin-spin coupling and would
therefore not occur for collisions between atoms and spin-
doublet molecules.

G. Hyperfine interactions

Next, we investigate the effect hyperfine interactions by
including nuclear spin in the coupled-channels scattering cal-
culations. To this end, the basis set of Eq. (9) is extended to
functions of the form

|(NL)J (s s3)S;JM〉∣∣i1mi1

〉∣∣i2mi2

〉∣∣i3mi3

〉
. (21)

The Na nuclear spin is i1 = i3 = 3/2 and the Li nuclear spin
is i2 = 1. Only functions with M + mi1 + mi2 + mi3 equal to
+11/2 are included for the upper spin-stretched state, and
−11/2 for the lower spin-stretched state, respectively. The
hyperfine couplings included take the form a î · ŝ for each
atom. We write this dot product as îz ŝz − î+1ŝ−1 − î−1ŝ+1.
Matrix elements of the spherical components of the electron
spin operators are given in the Appendix. The action of the
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FIG. 10. Representative magnetic field scans with noninitial Zeeman states removed. Shown are representative magnetic field scans
obtained by excluding the noninitial Zeeman states for N = 0 from the calculation. Different panels correspond to truncation of the basis
set at Nmax = 2, 10, 30, as indicated. The left-hand (right) column shows results for the upper (lower) spin-stretched state. Excluding the
lower-lying Zeeman levels for the upper spin-stretched state increases the typical number of resonances, whereas excluding excited Zeeman
levels for the lower spin-stretched state does not reduce the typical number of resonances.

nuclear spin operators is

îz|im〉 = m|im〉, (22)

î+1|im〉 = −
√

1
2 (i − m)(i + m + 1) |i, m + 1〉,

î−1|im〉 =
√

1
2 (i + m)(i − m + 1) |i, m − 1〉. (23)

The inclusion of the hyperfine structure substantially in-
creases the dimension of the basis set and we perform
calculations for modest Nmax = 10, shown in Fig. 12. As
can be seen, the inclusion of the hyperfine structure modi-
fies the spectrum of resonances, but it does not substantially
increase the number of resonances nor does it lead to
a clearly identifiable multiplet structure on the existing
resonances.
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FIG. 11. Representative magnetic field scans with the channel basis truncated with Jmax = 1. Different panels correspond to truncation of
the basis set at Nmax = 2, 10, 30, as indicated. The left-hand (right) column shows results for the upper (lower) spin-stretched state. Truncation
of the basis set with Jmax = 1 reduces the number of resonances, and the qualitative difference in the number of visible resonances between the
two spin states disappears.

H. Higher magnetic-field strengths

Finally, we consider a wider B-field scan of the colli-
sional loss rate that is not accessible in the experiment.
In Fig. 13 we see that a strong resonance feature oc-
curs around 5000 G for the upper spin-stretched state.
This feature occurs consistently at the same magnetic field
strength and is insensitive to the uncertainty of the interac-
tion potential. This is not a Feshbach resonance, but rather
results from resonant energy transfer via spin-spin coupling

where the energy released by Zeeman relaxation matches
the rotational energy associated with excitation from N =
0 to N = 2. This occurs only in the upper spin-stretched
state, as Zeeman relaxation is not possible in the lower
state.

A similar feature may be expected around 1650 G and
3300 G, where the Zeeman energy released by a double and
a single spin flip, respectively, is resonant with the N = 0 to
N = 1 rotational transition. This, however, is not observed as
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FIG. 12. Including hyperfine interactions in the calcuations. Rep-
resentative magnetic field scans are obtained with and without
hyperfine interactions. Panel (a) shows results for the upper spin-
stretched state and panel (b) the lower spin-stretched state. Including
hyperfine interactions increases the number of resonances somewhat,
but not significantly, and it does not lead to clearly identifiable
multiplet splittings.

these rotational states are not coupled by spin-spin nor by
spin-rotation coupling.

I. Discussion

A summary of our findings is represented in Fig. 14 which
can also be found in the accompanying paper [36]. This fig-
ure compares the spectra of Feshbach resonances for the upper
and lower spin-stretched states. The markers show four times
the loss rate obtained with the spin-spin and spin-rotation
couplings halved. Agreement with the solid lines indicates
these spin-dependent couplings act perturbatively, and the loss
rates scale as the coupling constants squared. Note that this
does not apply to the sharp resonances, which are narrower
for smaller coupling. The dashed-dotted line indicates the
loss rate obtained with the interaction anisotropy turned off.
Turning off the interaction anisotropy effectively turns off the
dominant loss mechanism, which requires the combination of
spin-spin or spin-rotation coupling and the anisotropic atom-
molecule interaction. The resulting, much smaller loss rate,
is entirely due to the magnetic dipole-dipole interaction and
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FIG. 13. Collisional loss rates at higher magnetic fields. Plotted
are representative magnetic field scans up to higher magnetic fields
than are probed experimentally. In the upper spin-stretched state, a
strong feature appears which is caused by a resonance between the
Zeeman relaxation energy and a rotational excitation. In the lower
spin-stretched state, more resonances are typically visible, but the
strong feature near 5000 G is missing as Zeeman relaxation is not
possible in this spin state.

vanishes within our model if the dipole-dipole interaction is
also turned off. The role of the anisotropic atom-molecule
interaction, however, is not perturbative. This can be seen
from the disagreement between the solid line, which results
from the full calculation, and the dotted line, which is obtained
from a calculation where we half the strength of anisotropic
interactions and multiply the resulting loss rate by a factor of
4. We also see that changing the strength of the anisotropic
short-range interaction affects the resonance positions. This
means that the pattern of resonances cannot be explained in
terms of the long-range isotropic van der Waals interaction
alone, as was argued in Ref. [71], despite the fact that the
vast majority of resonances is supported by the long-range
R−6 interaction, as argued in Ref. [71] and confirmed in our
density-of-states calculations.

In Fig. 14 we also witness the qualitative difference in
the number of resonances observed in the two maximally
stretched spin states. By performing calculations for various
λ scalings of the potential, we typically observe around five
and ten resonances for the upper and lower spin-stretched
state, respectively. This is in qualitative agreement with the
experimental observation of 8 and 17 resonances in the up-
per and lower stretched state, respectively. The difference
between theory and experiment is partially explained by the
neglect of the vibrational degree of freedom and hyperfine
structure, as discussed above. This difference between the two
spin states in the observed resonance density is not attributed
to a difference in density of states, but rather to the decay
of resonances to Zeeman-relaxed channels from the upper
spin-stretched state, as discussed in Sec. III F.

Figure 14 also suggests substantial differences in the back-
ground loss rate between the upper and lower spin-stretched
states, in contrast to the experimental observations where
very similar loss rates were found. Indeed, this demonstrates
that, for a particular realization of the calculation, for specific
λ scalings of the potential, such differences can occur, and
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FIG. 14. Perturbative analysis of calculated collision rates. Res-
onance spectra are displayed for the upper and lower spin-stretched
states in orange and blue solid lines, respectively, calculated for
λ = −0.02 and Nmax = 30, also shown as Fig. 4(a) in the accom-
panying paper [36]. Markers show four times the loss rate obtained
with the spin-spin and spin-rotation couplings halved, and agreement
with the solid lines indicates these spin-dependent couplings act
perturbatively. For the upper stretched state, the dashed-dotted line
indicates the loss rate obtained with the interaction anisotropy turned
off, which is entirely due to the magnetic dipole-dipole interaction.
The much smaller loss rate in this case identifies a combination of the
anisotropic interaction and the spin-spin and spin-rotation coupling
as the dominant loss mechanism. The dotted line is obtained by
halving the strength of anisotropic interactions and multiplying the
resulting loss rate by a factor of 4. This completely changes the
shape and resonance positions. The disagreement between the dotted
and the full line indicates that the anisotropic interactions do not act
perturbatively.

there is no guarantee that the two states exhibit the same
background loss rate despite the losses being determined by
the same mechanisms. However, this is not necessarily the
expected behavior. In the λ scans of the ratio of elastic-to-
inelastic collisions, shown in Fig. 5, we see that the two
stretched spin states exhibit qualitatively the same behavior,
and that for most values of λ the loss rates are similar be-
tween the two states, but for specific values of λ there can
be large differences. Such large differences can occur where
a resonance occurs in one of the two spin states, but they
can also reflect differences in the background scattering rates.
In Figs. 8, 10, and 11 we see several examples where the
background loss rate between the two spin states can be either
similar, different by a small factor, or different by about an
order of magnitude. Where the background scattering rates
are different (for a specific λ scaling and basis-set truncation
Nmax) these differences are not systematic; it can either be the
upper or lower spin-stretched state that experiences the higher
background scattering rate. Again, as shown most clearly in
Fig. 5, the expected background behavior is similar for the
two spin states.

IV. CONCLUSION

We perform coupled-channels scattering calculations of
Feshbach resonances in spin-polarized NaLi (a3�+) + Na

collisions based on ab initio interaction potentials calculated
in this work. Quantitatively predicting the background scatter-
ing length or the positions of resonances is beyond the reach
of current state-of-the-art theory. However, the calculations
do explain the experimental observations qualitatively. The
background loss is fast in nonstretched spin states, whereas in
stretched states the ratio of elastic-to-inelastic collisions can
be around 100, in agreement with previous observations of
sympathetic cooling. When comparing the upper and lower
stretched states we find the expected background loss rate to
be similar, also in agreement with experimental observations.

The calculations, furthermore, capture a series of Feshbach
resonances. We show that these resonance states are supported
by relatively short atom-molecule separations up to 40 a0, We
show that the dominant coupling mechanism is a combination
of the anisotropic atom-molecule interaction and the spin-spin
coupling, and to a lesser extent, spin-rotation coupling. The
resonance states are supported by atom-molecule separations
up to 40 a0, where the interaction can be described by its
asymptotic R−6 form, as was previously argued for alkali-
metal atom-molecule collisions [31,71]. However, due to the
critical role of the anisotropic atom-molecule interaction in
the coupling mechanism, the resonance positions depend sen-
sitively on the anisotropic short-range interactions and the
pattern of resonances cannot be described in terms of the
long-range R−6 interaction alone.

In the lower spin-stretched state we observe approximately
ten resonances up to 1500 G. In the upper spin-stretched state
only around five resonances are visible due to fast decay to
lower-lying Zeeman states in N = 0. This qualitative differ-
ence between the upper and lower spin-stretched states is also
been observed experimentally, where the two states support
8 and 17 resonances, respectively. Molecular vibrations and
hyperfine interactions, which were excluded in most of the
scattering calculations that we performed, are expected to
further increase the number of observable resonances. Calcu-
lations of the density of states suggests molecular vibrations
increase the number of resonances by 50%, and a scattering
calculation including hyperfine interaction in a small basis
suggests that this too can increase the number of observed
resonances somewhat. Hence, the calculations are in semi-
quantitative agreement with the experimental observations.

Our combined experimental and theoretical study shows
that Feshbach resonances and collisional complexes can be
well understood on the basis of state-of-the-art first-principles
calculations. Due to the light elements, highly accurate
electronic structure calculations can be performed on this tri-
atomic collision complex, with an uncertainty smaller than 3%
of the pairwise nonadditive three-body part of the potential.
To make fully quantitative predictions, the accuracy of the
electronic structure calculations should be improved by more
than one order of magnitude, and the coupled-channels calcu-
lations should be converged, including vibration and hyperfine
structure. While it is not feasible with present-day meth-
ods and computational power, predicting the exact positions
of measured Feshbach resonances in NaLi + Na collisions
constitutes a perfect test bed and playground for near-future
developments of both electronic structure and scattering the-
ory. In the meantime, this work emphasizes that we can still
draw statistical conclusions regarding the density and typical
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width of resonances, and the typical background loss rate, that
are in nearly quantitative agreement with experimental obser-
vations. Our work showcases how scattering calculations can
be used as a “numerical experiment” in which the interaction

can be scaled at will, specific couplings can be turned off,
or exit channels removed, as a versatile tool to identify the
dominant coupling mechanisms, the nature of the resonance
states, and their relevant decay pathways.
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APPENDIX: MATRIX ELEMENTS

In this Appendix we give all required matrix elements in the coupled basis functions of Eq. (9). First, we consider the matrix
elements of the electronic spin operators required for the Zeeman interaction ĤZeeman = μBgeB(ŝ1,z + ŝ2,z + ŝ3,z ). These are

〈(NL)J (s s3)S;JM|ŝ1,q|(N ′L′)J ′(s′ s3)S′;J ′M〉
= δN,N ′δL,L′δJ,J ′ (−1)2J−M+J+2S′+s+s′+s1+s2+s3+1[J ,J ′, S, S′, s, s′]1/2

×
(
J 1 J ′
M q M′

){
J 1 J
S′ J S

}{
S 1 S′
s′ s3 s

}{
s 1 s′
s1 s2 s1

}√
s1(s1 + 1)(2s1 + 1), (A1)

and similarly

〈(NL)J (s s3)S;JM|ŝ2,q|(N ′L′)J ′(s′ s3)S′;J ′M〉
= δN,N ′δL,L′δJ,J ′ (−1)2J−M+J+2S′+2s′+s1+s2+s3+1[J ,J ′, S, S′, s, s′]1/2

×
(
J 1 J ′
M q M′

){
J 1 J
S′ J S

}{
S 1 S′
s′ s3 s

}{
s 1 s′
s2 s1 s2

}√
s2(s2 + 1)(2s2 + 1), (A2)

and

〈(NL)J (s s3)S;JM|ŝ3,q|(N ′L′)J ′(s′ s3)S′;J ′M〉
= δN,N ′δL,L′δs,s′δJ,J ′ (−1)2J−M+J+2S′+s+s3 [J ,J ′, S, S′]1/2

×
(
J 1 J ′
M q M′

){
J 1 J
S′ J S

}{
S 1 S′
s′ s3 s

}√
s3(s3 + 1)(2s3 + 1), (A3)

where the q = −1, 0, 1 spherical components of the spin operators are given by ŝ0 = ŝz and ŝ±1 = ∓(ŝx ± iŝy)/
√

2, and the
quantity in round brackets is a Wigner 3 j symbol and the quantity in curly brackets denotes a Wigner 6 j symbol.

The remaining operators we consider are all scalar and diagonal in J and M. For the spin-rotation coupling γsN̂ · ŝ with
γs = 0.005 cm−1 we need the matrix elements

〈(NL)J (s s3)S;JM|N̂ · ŝ|(N ′L′)J ′(s′ s3)S′;JM〉
= δN,N ′δL,L′δS,S′ (−1)2J ′+S+J+N+L+s+s3+S′

[J, J ′, S, S′]1/2

×
{

J 1 J ′
N ′ L N

}{
S 1 S′
s′ s3 s

}√
N (N + 1)(2N + 1)s(s + 1)(2s + 1). (A4)

The spin-spin coupling is given by λs

√
30/3[[ŝ ⊗ ŝ](2) ⊗ C(2)(r̂NaLi)]

(0)
0 with λs = −0.0189 cm−1. Here,

[A(k1 ) ⊗ B(k2 )](k)
q =

∑
q1,q2

A(k1 )
q1

B(k2 )
q2

〈k1q1k2q2|kq〉 (A5)
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is the rank-k spherical tensor product and C(2)(rNaLi) is a tensor of Racah-normalized spherical harmonics depending on the
Euler angles of the molecular axis rNaLi. For the matrix elements we have

〈(NL)J (s s3)S;JM|[[ŝ ⊗ ŝ](2) ⊗ C(2)(r̂NaLi)]
(0)
0 |(N ′L′)J ′(s′ s3)S′;JM〉

= δL,L′δs,s′ (−1)2J ′+S+J+N+L+s+s3+S′
[J, J ′, S, S′]1/2

×
{

J 2 J ′
N ′ L N

}{
S 2 S′
s′ s3 s

}(
N 2 N ′
0 0 0

) √
s(2s − 1)

√
5
( s 2 s
−s 2 s − 2

) . (A6)

To evaluate the magnetic dipole-dipole interaction V̂magn.dip = −√
30(μBgeα)2R−3[[ŝ ⊗ ŝ3](2) ⊗ C(2)(R̂)](0)

0 , we use the fol-
lowing:

〈(NL)J (s s3)S;JM|[[ŝ ⊗ ŝ3](2) ⊗ C(2)(R̂)](0)
0 |(N ′L′)J ′(s′ s3)S′;JM〉

= δN,N ′δs,s′ (−1)J ′+S+J+N+L′+J+L[L, L′, J, J ′, S, S′]1/2

×
{

J 2 J ′
L′ N L

}⎧⎨
⎩

s s′ 1
s3 s3 1
S S′ 2

⎫⎬
⎭

(
L 2 L′
0 0 0

)√
s(s + 1)(2s + 1)s3(s3 + 1)(2s3 + 1), (A7)

where the second quantity in curly brackets represents a Wigner 9 j symbol.
Finally, for the electronic interaction we have the following expressions:

〈(NL)J (s s3)S;JM|P(cos θ )|(N ′L′)J ′(s′ s3)S′;JM〉
= δJ,J ′δs,s′δS,S′ (−1)J+S+J+N+L[J , J, J ′, , N, N ′, L, L′]1/2

×
⎧⎨
⎩

N N ′ 

L L′ 

J J ′ 0

⎫⎬
⎭

{
J 0 J ′
J ′ S J

}(
N  N ′
0 0 0

)(
L  L′
0 0 0

)
, (A8)

〈(NL)J (s s3)S;JM|P(cos θ )ŝ1 · ŝ3|(N ′L′)J ′(s′ s3)S′;JM〉
= δJ,J ′δS,S′ (−1)N+L+s1+s2+s′

[J , J, J ′, , N, N ′, L, L′, S, S′, s, s′, 1]1/2

×
⎧⎨
⎩

N N ′ 

L L′ 

J J ′ 0

⎫⎬
⎭

⎧⎨
⎩

J J ′ 0
S S′ 0
J J ′ 0

⎫⎬
⎭

⎧⎨
⎩

s s′ 1
s3 s3 1
S S′ 0

⎫⎬
⎭

{
s 1 s′
s1 s2 s1

}(
N  N ′
0 0 0

)(
L  L′
0 0 0

)

×
√

s1(s1 + 1)(2s1 + 1)s3(s3 + 1)(2s3 + 1), (A9)

and

〈(NL)J (s s3)S;JM|P(cos θ )ŝ2 · ŝ3|(N ′L′)J ′(s′ s3)S′;JM〉
= δJ,J ′δS,S′ (−1)N+L+s1+s2+s[J , J, J ′, , N, N ′, L, L′, S, S′, s, s′, 1]1/2

×
⎧⎨
⎩

N N ′ 

L L′ 

J J ′ 0

⎫⎬
⎭

⎧⎨
⎩

J J ′ 0
S S′ 0
J J ′ 0

⎫⎬
⎭

⎧⎨
⎩

s s′ 1
s3 s3 1
S S′ 0

⎫⎬
⎭

{
s 1 s′
s2 s1 s2

}(
N  N ′
0 0 0

)(
L  L′
0 0 0

)

×
√

s2(s2 + 1)(2s2 + 1)s3(s3 + 1)(2s3 + 1). (A10)

The full expansion of the interaction is given in Eq. (3) and the expansion coefficients are determined as explained in the main
text.
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Phys. Rev. A 98, 042702 (2018).

[66] M. Morita, R. V. Krems, and T. V. Tscherbul, Phys. Rev. Lett.
123, 013401 (2019).

[67] M. Morita, J. Kłos, and T. V. Tscherbul, Phys. Rev. Res. 2,
043294 (2020).

[68] G. F. Gribakin and V. V. Flambaum, Phys. Rev. A 48, 546
(1993).

[69] Y. V. Suleimanov and R. V. Krems, J. Chem. Phys. 134, 014101
(2011).

[70] M. D. Frye and J. M. Hutson, Phys. Rev. Res. 2, 013291
(2020).

[71] M. D. Frye and J. M. Hutson, Phys. Rev. Res. 5, 023001 (2023).
[72] D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).

023309-19

https://doi.org/10.1002/wcms.1327
https://doi.org/10.1002/(SICI)1097-461X(2000)78:6<412::AID-QUA2>3.0.CO;2-U
https://doi.org/10.1063/1.4747454
https://www.jstage.jst.go.jp/article/tmj1911/18/0/18_0_61/_article/-char/en
https://doi.org/10.1063/1.470984
https://doi.org/10.1063/1.3569829
https://doi.org/10.1063/1.5083116
https://doi.org/10.1103/PhysRevA.88.050701
https://doi.org/10.1103/PhysRevLett.110.063201
https://doi.org/10.1021/acs.jpca.3c00797
https://doi.org/10.1103/PhysRevA.98.042702
https://doi.org/10.1103/PhysRevLett.123.013401
https://doi.org/10.1103/PhysRevResearch.2.043294
https://doi.org/10.1103/PhysRevA.48.546
https://doi.org/10.1063/1.3512627
https://doi.org/10.1103/PhysRevResearch.2.013291
https://doi.org/10.1103/PhysRevResearch.5.023001
https://doi.org/10.1063/1.462100

