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Collisional resonances of molecules can offer a deeper understanding of interaction potentials and
collision complexes, and allow control of chemical reactions. Here, we experimentally map out the
spectrum of Feshbach resonances in collisions between ultracold triplet rovibrational ground-state NaLi
molecules and Na atoms over a range of 1400 G. Preparation of the spin-stretched state puts the system
initially into the nonreactive quartet potential. A total of 25 resonances are observed, in qualitative
agreement with quantum-chemistry calculations using a coupled-channels approach. Although the theory
cannot predict the positions of resonances, it can account for several experimental findings and provide
unprecedented insight into the nature and couplings of ultracold, strongly interacting complexes. Previous
work has addressed only weakly bound complexes. We show that the main coupling mechanism results
from spin-rotation and spin-spin couplings in combination with the anisotropic atom-molecule interaction,
and that the collisional complexes which support the resonances have a size of 30a0–40a0. This study
illustrates the potential of a combined experimental and theoretical approach.

DOI: 10.1103/PhysRevX.13.031018 Subject Areas: Atomic and Molecular Physics,
Physical Chemistry, Quantum Physics

I. INTRODUCTION

Collisional resonances that are electromagnetically tuna-
ble have become an established tool for modifying inter-
actions between ultracold atoms and are the key for many
applications, from magnetic association of loosely bound
molecules to quantum simulations [1,2]. For ultracold
molecular systems, tunable collisional resonances can con-
trol chemical reactions [3] and also provide microscopic
information about interaction potentials and collision
complexes.
In the case of cold collisions between alkali-metal atoms,

the number of resonant states remains typically small, and
the resonances are usually tractable. However, in the case of
cold collisions involving molecules, due to strong and
anisotropic interactions, rovibrational excited states can

also contribute to resonant states, and therefore resonances
themselves may not be well separated and are difficult to
identify. Because of the large density of states of molecular
systems [4,5] it has been a challenge to perform rigorous
scattering calculations, and different methods of approx-
imations have become an active field [6,7]. Despite these
efforts, due to the extreme sensitivity of the low-
temperature observables to details of potential energy
surfaces [8,9], there has been very little success in predict-
ing Feshbach resonances in molecular collisions.
Rather than performing exact quantum calculations, one

feasible alternative approach is the use of simple statistical
short-range models while treating the physics of long-range
scattering within multichannel quantum defect theory. This
has been pursued for the description of molecular reso-
nances [4,5,10,11]. However, the validity of statistical
short-range models is controversial and, therefore, detailed
experimental and further theoretical studies are needed.
Previously, only resonances supported by long-range

states of collision complexes could be assigned to specific
quantum states since the quantum numbers of the separated
atoms andmolecules are approximately preserved. Resonant
states in collisions involving Feshbach molecules [12–15]
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and in collisions between 40K and ground-state
23Na40KðX1ΣþÞ [16,17] were successfully analyzed in this
way. Here we are addressing the challenge of more strongly
interacting complexes by using, for the first time, a combined
experimental and theoretical quantum-chemistry approach
toward this goal. The agreement between experiment and
theory validates approximations in the calculations, and the
theoretical results can then be used to assign quantum
numbers to resonances and to identify the microscopic
mechanism of the resonant couplings. To keep the problem
tractable, we focus on collisions between triplet rovibrational
ground-state NaLi and Na, both prepared in the maximally
spin-stretched state. Collisions of 23Na6Liða3ΣþÞ with Na
are generally chemically reactive [23Na6Liða3ΣþÞ þ Na →
Na2ðX1Σþ

g Þ þ Liþ heat]. However, the chemical reaction in
the fully spin-polarized atom-molecule system is strongly
suppressed due to the approximate conservation of the total
spin [18,19], and we can regard NaLiþ Na in the quartet
potential as approximately chemically stable. The system is
suitable for modeling molecular scattering resonances
because of the relatively small density of states and number

of electrons, and therefore more accurate quantum calcu-
lations are feasible compared to other heavier molecular
systems. Although the observed resonances involve strongly
bound complexes, we can make complete assignments of
spin states and total mechanical angular momentum and
identify the relevant coupling terms.
In previous work, we have analyzed the line shape of

one very strong resonance in collisions between 23Na and
23Na6Liða3ΣþÞ [18]. Here we report a study of collisions in
both spin-stretched states over a magnetic field range of over
1400 G and report more than 20 new Feshbach resonances.
This now allows us to draw conclusions about typical
features of collisional complexes. The direct comparison
with quantum chemistry calculations provides major new
insight into the interaction potential and couplingmechanism
of the strongly interacting collision complex.

II. EXPERIMENTAL PROTOCOL AND RESULTS

Weprepare amixture of triplet ground-state 23Na6Liða3ΣþÞ
molecules and 23Na atoms in the spin-polarized quartet

(b)

(a)

FIG. 1. Collisional loss spectrum of NaLi molecules with Na atoms as a function of magnetic field. Spectra are recorded for both the
upper (a) and lower (b) stretched hyperfine states. Shown is the normalized number of NaLi molecules left after sweeping down the bias
field by 13 G for 200 ms. The number of Na atoms in each pancake is around 115, and the initial number of NaLi molecules is about 35
at temperatures of TNa ≈ TNaLi ≈ 1.6 μK, corresponding to an overlap density of about 1.1 × 1011 cm−3. A total of 25 resonances,
indicated by red lines, are observed: 8 in the upper spin-polarized mixture and 17 in the lower spin-polarized mixture. Each data point
represents 3–8 measurements. Error bars correspond to one standard deviation of the mean. Dashed lines are a guide to the eye, obtained
by interpolating data with a piecewise cubic polynomial.
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potential. There are two possible states: the “upper
stretched state,” where all nuclear and electron spins are
aligned to the bias magnetic field direction (jF;MFiNaLiþ
jF;MFiNa ¼ j7=2; 7=2iNaLi þ j2; 2iNa), and the “lower
stretched state,” where all nuclear and electron spins are
antialigned to the field direction (j7=2;−7=2iNaLi þ
j2;−2iNaLi). Here, F is the quantum number for the total
spin (electron and nuclear) andMF is the B-field projection
of F. The molecule and atom mixture in the upper stretched
state with typical numbers of ∼3 × 104 and ∼3 × 105,
respectively, is produced at a temperature of TNa ≈ TNaLi ∼
T ¼ 1.55 μK in a 1596 nm one-dimensional optical lattice
following the method described in Refs. [18,20]. The lower
stretched state is produced by coherent transfer from the
sample in the upper stretched state using a magnetic field
sweep in the presence of radio frequency waves [21]. For
this process, the bias field is dropped from 745 G, where
the upper stretched state is prepared, to a low field
of around 8 G in 15 ms. After state preparation, the bias
field is ramped to a target value in 15 ms. Collisional
lifetimes of the atom-molecule mixtures are determined
by holding the sample for a variable time at the target
magnetic field.
The loss of NaLi molecules with Na atoms is measured

as a function of the bias field for both spin-polarized states.
First, we perform a coarse search by sweeping the bias field
over a range of 12.6 G during 200 ms and recording the
number of remaining molecules, normalized to the number
without the field sweep. This procedure is repeated over a
range from near zero to 1420 G in steps of 8.76 G, with the
results shown in Fig. 1.
Near the loss features found in the coarse scan, finer

scans are performed with sweep range and step size of
around 1 G. We identify 8 resonances in the upper stretched
state and 17 resonances in the lower stretched state
indicated with red vertical lines in Fig. 1. Some structures
visible in Fig. 1 which are not marked with red lines are not
reproduced by the fine scans and could therefore not be
distinguished from background loss. Using the data from
the fine scans, each loss feature is fit to a Lorentzian with a
slope accounting for background loss and nearby reso-
nances [an example is shown in Fig. 2(a)]. For all
resonances, the thus obtained peak positions and widths
are listed in Table I. Strong losses lead to a broadened line
shape. Therefore, for three resonances (labeled 4, 5, and 6
in the upper stretched state), we also determine the atom
loss as a function of hold time and determine loss rates as a
function of the bias field. These results are used for a more
accurate determination of the resonance position and width,
as shown in Fig. 2(b). We confirm that the width obtained
from observed loss features can be broader than the width
from the loss rate measurement. Figure 2 illustrates this for
resonance 5 in the upper stretched state which is near
884 G. The width obtained from a Lorentzian fit to the loss
feature is 17(1) G, whereas the loss rate measurements give
a width of 10(2) G.

For all resonances, we determine peak loss rate constants
β by recording decay curves as a function of the hold time
near the center of the loss features. They are summarized in
the last column of Table I. The determination of loss rate
constants requires knowledge of the densities of sodium
atoms overlapped with molecules. Instead of absolute
calibration, we follow Ref. [18] and compare measured
decay rates with the decay rate of the mixture in a
nonstretched spin state which occurs at the universal
rate [22]. This approach was validated in Ref. [18].
Away from resonances, the observed background loss

rates are more than an order of magnitude smaller than the
universal loss rate constant which for Naþ NaLi s-wave
collisions is 1.7 × 10−10 cm3 s−1. More specifically, at low

(a)

(b)

FIG. 2. Feshbach resonance near 884 G. This resonance is
observed for NaLiþ Na in the upper stretched state. (a) Normal-
ized NaLi number as a function of bias field after a hold time of
100 ms. (b) Loss rate of NaLi molecules obtained from decay
curves as shown in the inset at 884.3 G. Data values and error bars
in (a) and inset of (b) represent the average and one standard
deviation of the mean, estimated from statistical errors of 3–6
measurements, respectively. Error bars in the main plot of
(b) represent one standard deviation of a fitted decay parameter.
The blue lines are the fits to a Lorentzian function plus a
background with a linear slope.
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field near 0.5 G, the upper and lower stretched Naþ NaLi
loss rate constants are 7.5ð2.2Þ × 10−12 and 6.7ð2.0Þ×
10−12 cm3 s−1, respectively, and at high field (near 540 G),
they are 4.5ð1.4Þ × 10−12 and 3.5ð1.0Þ × 10−12 cm3 s−1,
respectively. Within the accuracy of measurement, the two
stretched states have the same loss rate constants, with
lower background loss rates at higher magnetic fields.

III. ANALYSIS

In this section, we summarize the experimental findings
and draw some conclusions. First, we observe similar rates
of background loss and Feshbach enhanced losses for both
stretched states. This implies that Zeeman energies do not
play a major role and that dipolar relaxation is not the
dominant decay mechanism. Instead, the decay is probably
dominated by shorter-range chemical reactions or inelastic

loss, which are expected to be similar for both spin-
stretched initial states. Regarding the number of resonan-
ces, we have observed more resonances for the lower
stretched state. In the range up to 1400 G, we observed 8
resonances in the upper stretched state and 17 in the lower
stretched state. Intuitively this observation can be ration-
alized that for the lower stretched state, the noninitial
Zeeman states are closed channels that can support addi-
tional resonance states. Surprisingly, our quantum-
chemistry calculations below show that the difference is
instead caused by fast decay of some upper stretched state
resonances that become too broad to be observed.
Next, we discuss the widths and spacings between

resonances. The linewidths of the resonances range from
about 1 G to about 30 G. If the linewidths are interpreted as
due to the finite lifetime of the resonant state, this implies
atom-molecule complexes with lifetimes in the range of
10 to 350 ns. Note that this interpretation cannot be applied
to the strongest resonances including the resonance 6 in the
upper stretched state near 978 G, in which the peak loss rate
is close to the unitarity limit. In these cases, the resonances
are associated with long-lived complexes. The broadening
of the linewidths by the finite lifetime of the resonant state
is small, and the resonance coupling strength determines
the linewidth [18]. The average spacing between resonan-
ces is around 100 G. One possible interpretation of the
spacing is rotational structure of the intermediate complex.
The spacing between resonances of the order of 100 G
corresponds to single spin-flip energy differences of
280 MHz. A rotational constant of this value corresponds
to the moment of inertia of a complex with a size (i.e.,
atom-molecule separation) of around 30a0. Note that the
rotationally excited states of the NaLi triplet molecules with
N ¼ 1 are at 9.25 GHz and N ¼ 2 are at 27.75 GHz [23]
corresponding to a double spin-flip energy at 1650 and
5000 G. In the accompanying paper, we show that this may
lead to strong resonant features [24], but these occur far
outside the magnetic field range studied here.
Finally, we can perform a statistical analysis of the

distribution of nearest-neighbor resonance spacings. The
observed distribution follows the Wigner-Dyson distribu-
tion [25,26], which is a feature of a chaotic system (see the
Appendix). However, statistical conclusions from only 17
resonances are only tentative.

IV. COUPLED-CHANNELS CALCULATIONS

With the coupled-channels calculations we try to answer
the following questions. (1) What is the mechanism of
coupling between the initial scattering channel and the
loss channels for the background loss? (2) What are the
dominant interactions that are responsible for the resonan-
ces? (3) Why are there more observed resonances for the
lower stretched state? (4) What quantum numbers describe
the collisional complex? (5) What is the size of the
collisional complex?

TABLE I. Observed Feshbach resonances. Resonance positions
and widths are obtained by Lorentzian fits to loss features,
except for resonances 4–6 for the incoming collision channel
j7=2; 7=2iNaLi þ j2; 2iNa. For these resonances, the position and
width are determined by Lorentzian fits to the field-dependent
loss rates [18].

Collision channel: j7=2; 7=2iNaLi þ j2; 2iNa
B0 (G) ΔB (G) β (cm3 s−1)

1 203.7(2) 5.3(7) 1.5ð6Þ × 10−11

2 237.9(1) 6.3(4) 7.1ð1Þ × 10−11

3 372.0(7) 20(3) 2.3ð5Þ × 10−11

4 657.8(3) 5.2(8) 1.0ð1Þ × 10−10

5 884.3(3) 10(2) 6ð1Þ × 10−11

6 978.2(2) 4.9(3) 7.4ð5Þ × 10−10

7 1029.7(3) 10(2) 1.5ð3Þ × 10−11

8 1135.2(8) 15(3) 3.0ð5Þ × 10−11

Collision channel: j7=2;−7=2iNaLi þ j2;−2iNa
B0 (G) ΔB (G) β (cm3 s−1)

1 82.5(1) 1.3(2) 1.0ð3Þ × 10−10

2 145(1) 18(4) 5.3ð9Þ × 10−11

3 309(1) 13(4) 1.9ð4Þ × 10−11

4 361.82(5) 1.0(2) 4.5ð8Þ × 10−11

5 449.8(2) 3.1(5) 6ð2Þ × 10−11

6 478(3) 35(13) 3.4ð6Þ × 10−11

7 561.8(2) 2.4(6) 8ð2Þ × 10−11

8 590.7(2) 9(1) 8ð2Þ × 10−11

9 642.3(5) 3(2) 2.9ð4Þ × 10−11

10 661.5(2) 3.9(9) 2.4ð5Þ × 10−11

11 722.5(1) 2.7(3) 8ð4Þ × 10−11

12 860.8(2) 2.1(6) 2.4ð6Þ × 10−10

13 963.3(2) 6(1) 2ð1Þ × 10−10

14 1030.1(2) 3.3(8) 9ð3Þ × 10−11

15 1083.3(3) 4(1) 5ð1Þ × 10−11

16 1176.3(3) 3.2(9) 8ð2Þ × 10−11

17 1269.2(1) 2.6(3) 3.3ð5Þ × 10−11
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The main result is shown in Fig. 3. A calculated
spectrum reproduces most of the observed features (mag-
nitude of loss rate, widths and number of resonances,
more resonances for the lower stretched states), but cannot
predict the observed resonance positions. This illustrates
the power (and limitations) of state-of-the-art quantum-
chemistry calculations.
These calculations are fully quantum mechanical

coupled-channel calculations including the electronic inter-
actions, the Zeeman interaction with the magnetic field, the
magnetic dipole-dipole interaction, and the spin-rotation,

Ĥspin-rotation ¼ γsN̂ · ŝ; ð1Þ

and spin-spin couplings,

Ĥspin-spin ¼ λs
ffiffiffiffiffi

30
p

=3½½ŝ ⊗ ŝ�ð2Þ ⊗ Cð2Þðr̂NaLiÞ�ð0Þ0 ; ð2Þ

where the spin-spin coupling parameter λs ¼ 0.0189 cm−1

and the spin-rotation coupling γs ¼ 0.005 cm−1 are used

[24]. Here, ½Â ⊗ B̂�ðkÞq indicates a tensor product, and
Cð2ÞðR̂Þ is a tensor of Racah-normalized spherical harmon-
ics. The electronic interaction is partitioned into two-body
interactions that are taken from experiment [27–29] and a
nonadditive three-body interaction that is calculated with
state-of-the-art coupled-cluster methods including single,
double, and triple excitations with large Gaussian basis sets

extrapolated to the complete basis set limit that are
described in the accompanying paper [24]. The interaction-
induced variation of spin-rotation and spin-spin couplings
is neglected. We assume that the molecular bond length is
fixed at the equilibrium position of the triplet potential,
which does not describe the chemical reactions that form
singlet NaLi or Na2 molecules at the low-spin potential.
In our coupled-channel calculations, we model these by
imposing an absorbing boundary condition at R ¼ 4.5a0,
which can be reached on the low-spin potential, but not on
the high-spin potential, which is highly repulsive at these
short distances. To reflect the error related to the rigid rotor
approximation, we use a conservatively estimated uncer-
tainty of the three-body interaction of �5% [24]. In
addition to this uncertainty, freezing the NaLi vibrational
coordinate reduces the density of states of the collision
complex by 50%, as we determine by quasiclassical
calculations of the density of states with and without the
rigid rotor approximation [24]. We thus expect that the rigid
rotor approximation affects our conclusions only quanti-
tatively, but not qualitatively.
For simplicity, we start by ignoring hyperfine and

vibrational degrees of freedom. The scattering wave func-
tion is expanded in the basis of fully coupled-channel
functions of the form

jðNLÞJðsmol; satomÞS;JMi
¼

X

MJ;MS

hJMJSMSjJMi

× jðNLÞJMJijðsmolsatomÞSMSi; ð3Þ

where hJMJSMSjJMi is a Clebsch-Gordan coefficient.
The quantum number N represents the rotational angular
momentum of the NaLi molecule, and L the angular
momentum associated with the relative motion of the atom
and molecule. N and L are Clebsch-Gordan coupled to a
total mechanical angular momentum J with z-component
MJ. Similarly, smol ¼ 0 or 1 denotes the NaLi molecular
electronic spin and satom ¼ 1=2 is the atomic electronic
spin, and S the total electronic spin with B-field projection
MS. In the coupled basis, J and S are subsequently coupled
to a total angular momentum J and a magnetic field
projection M ¼ MJ þMS. M is strictly conserved,
whereas, for a large enough magnetic field, MS becomes
a good quantum number and therefore MJ ¼ M −MS is
also a good quantum number. Because of the large singlet-
triplet splitting in the NaLi molecule, smol ¼ 0 or 1 is also a
good quantum number. For a separated atom and molecule,
msmol

and msatom would separately become good quantum
numbers, but at chemically relevant distances the exchange
splitting between the doublet and quartet interaction poten-
tials is dominant, so that S ¼ 1=2 and 3=2 are good
quantum numbers. Hence, we can effectively consider
each jSMSi state separately, with only perturbatively weak
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FIG. 3. Calculated spectrum of Feshbach resonances. Plotted
are the calculated resonances for the upper and lower stretched
states for Nmax ¼ 30 and λ ¼ −0.02. The comparison with Fig. 1
shows that most experimental features (except for resonance
positions) are reproduced by the calculations. Shown is the
normalized number of NaLi molecules left after 800 ms hold
time, i.e., 4 times longer than in the experiment. This discrepancy
is partially explained by the observation of higher elastic cross
sections than expected [20], since we can show that the
magnitudes of the elastic and inelastic cross sections are
correlated [24].
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couplings between them. For each of these spin channels,
there are strong and anisotropic interactions that couple
different N and L channels but conserve J and MJ. Since
we ignore nuclear spin, the initial channel corresponds to
s-wave collisions in the upper spin-stretched ground state
jðNLÞJMJijSMSi ¼ jð00Þ00ij3=23=2i or the lower spin-
stretched state jð00Þ00ij3=2;−3=2i. The full description of
the Hamiltonian and matrix elements in the channel basis is
given in the Appendix of the accompanying paper [24].
First, we consider the sensitivity of the scattering rates to

the interaction potential shown in Fig. 4(a). Here, we scale
by a factor 1þ λ the nonadditive three-body part of the
interaction potential, that is, the part that is computed
ab initio and is uncertain up to a conservatively estimated
5%. By modifying the potential by only 0.1%, we find that
the resonances start to shift so that realistically their
positions are completely undetermined, and when the
scaling reaches several percent we tune across magnetic
field-independent resonances, indicating that the back-
ground scattering length is undetermined. Next, shown
in Fig. 4(b), we again scale the three-body interaction but
now only for the low-spin doublet potential, leaving the
high-spin quartet potential unchanged. In this case, we find
that several of the resonances are now completely inde-
pendent of the scaling of the low-spin potential up to
λ ¼ 0.1. This implies that no stable resonance states are
supported by the chemically reactive low-spin potential and
that all the predicted (and observed) resonances originate in
the quartet potential.
The analysis above indicates that the ab initio prediction

of resonance positions is beyond the capability of state-
of-the-art calculations. Although the coupled-channels
calculations cannot predict the positions of the resonances,
we can still use these calculations as a “numerical experi-
ment” to investigate the nature of the resonance states,
the coupling mechanisms, and the observed differences
between the two spin-stretched states.
We perform coupled-channels scattering calculations

with the interactions scaled by 1þ λ and analyze the
typical behavior observed for different λ between −0.1
and þ0.1. Representative magnetic field scans can be seen
in Fig. 5(a). With the truncation of the maximum rotational
quantum number Nmax ¼ 30, we observe a converged
number of resonances of approximately 10 in the lower
spin-stretched state and only around 5 in the upper spin-
stretched state, respectively. This is in qualitative agreement
with the experiment which observes 17 and 8 resonances,
respectively. In the companion paper we show that based on
the density of states we would expect to see approximately
10 resonances for either spin-stretched state [24]. We
furthermore show that including molecular vibrations
would increase the density of states by approximately
50%, which can partially explain the lower number of
observed resonances compared to experiment. We show
that including hyperfine interactions increases the density

of resonances somewhat. With these effects in mind, one
could claim almost quantitative agreement with experiment
regarding the density of resonances.
One may expect that the lower spin-stretched state sup-

ports more magnetically tunable resonances because the
noninitial Zeeman states correspond to closed channels—
and hence can support Feshbach resonances—even in the
rotational ground state, whereas closed channels for the
upper spin-stretched state occur only for excited rotational

FIG. 4. Calculated loss rates as a function of magnetic field.
Calculations are done with scaling of the spin-independent three-
body interaction by a factor 1þ λ for Nmax ¼ 6. (a) Scaling of the
three-body interaction for both the doublet and quartet state. The
figure shows that scaling the three-body interactions within their
uncertainty of at least several percent dramatically changes the
loss rates: The positions of several Feshbach resonances change,
and several B-independent resonances appear when the λ scaling
creates a resonance in the initial spin-stretched potential, i.e., a
bound state near zero energy. The conclusion is that the
prediction of resonance positions and background loss requires
knowledge of the interaction potentials to an accuracy better than
can be achieved by ab initio calculations. (b) Scaling of the three-
body interaction only for the doublet potential. In this case,
the resonances follow vertical lines and are independent of the
scaling up to λ ¼ 0.1, implying that the resonances originate in
the quartet potential.
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states. We investigate this in our coupled-channels calcu-
lations by artificially excluding the noninitial Zeeman
states in the rotational ground state; see Fig. 5(b).
Somewhat surprisingly we find that excluding channels
from the calculation does not reduce the number of
resonances for the lower spin-stretched state, but rather
increases the observed number of resonances for the upper
spin-stretched state, where the excluded channels corre-
spond to asymptotically open channels. In the presence of
these open channels some of the resonances decay rapidly
by spin-spin coupling to lower Zeeman levels (both in the
doublet and quartet potentials) such that they are not
resolved, leading to a lower number of observable reso-
nances. This explains the observed qualitative difference
between the upper and lower spin-stretched states.
Finally, we investigate numerically the coupling mecha-

nism that gives rise to the observed resonances. As argued
above, each resonance state can essentially be assigned
a molecular and a total electron spin quantum number
smol ¼ 1 and S ¼ 3=2, as only the nonreactive quartet spin
state supports stable resonance states. The resonance is
magnetically tunable only if the Zeeman state MS changes.
To couple states with ΔMS ≠ 0 a spin-dependent coupling
must be involved through spin-rotation and spin-spin
coupling.
From the tensor rank of these couplings we can deter-

mine they couple states with the selection rules, J ¼ 0 → 1
and jΔMSj ≤ 1 (for spin-rotation coupling), and J ¼ 0 → 2
and jΔMSj ≤ 2 (for spin-spin coupling), respectively. The
spin-spin couplings and spin-rotation couplings arise from
terms ðŝmol · r̂Þðŝmol · r̂Þ and ŝmol · N̂ for the NaLi molecule,
where r̂ points along the molecular axis and ŝmol is the
molecular electronic spin. Since they depend on the
orientation of the molecular axis, they cause exchange of
spin angular momentum with the molecular rotation N.
Since J is approximately a good quantum number, both

mechanisms give rise to distinct and independent reso-
nances. Since the density of states of the collision complex
scales with 2J þ 1 and the differential magnetic moment
is higher for larger jΔMSj transitions, we conclude that
most—approximately 5=6—of the resonances are due to
spin-spin coupling, and the remaining 1=6 is due to spin-
rotation coupling. Spin-spin coupling does not occur for 2Σ
molecules, and hence is a somewhat unique coupling
mechanism for NaLi in the triplet ground state (3Σ).
To confirm the role of the spin-dependent interactions

in the coupling mechanism, we perform coupled-channels
calculations where we reduce these couplings by a factor 2.
The resulting cross section multiplied by four is shown
as the crosses in Fig. 5(a). The agreement with the full
calculation indicates scaling with the square of the coupling
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FIG. 5. Calculated spectrum of Feshbach resonances. (a) Results
for the upper and lower spin-stretched states are shown in orange
and blue solid lines (same data as in Fig. 3). The lower spin-
stretched state typically shows around 10 resonances below
1500 G, whereas the upper spin-stretched state shows around half
as many resonances. This qualitative difference between the two
states is also observed experimentally. We investigate whether the
anisotropy of the electronic interaction and the spin-spin and spin-
rotation coupling act perturbatively, by scaling down these cou-
plings by a factor of 2 and scaling the resulting cross section up by a
factor 4. Agreement with the full calculation indicates the spin-spin
and spin-rotation coupling act perturbatively, whereas the inter-
action anisotropy does not. The couplingmechanism however does
involve the anisotropy, as turning this off entirely produces a much
smaller cross section dominated by the magnetic dipole-dipole
interaction (dash-dotted line). When both anisotropy and dipole-
dipole are turned off, the calculated cross section is zero. (b) Re-
moval of Zeeman states. The qualitative differences in the number
of resonances for the upper and lower spin-stretched states
disappear when we exclude from the calculation channels corre-
sponding to Zeeman states in the rotational ground state, except for
the initial Zeeman state.
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strength that is expected for perturbatively weak spin-
dependent couplings. Note that on resonance, the depend-
ence on the coupling strength is not an overall scaling, as
the coupling strength also determines the resonance widths.
For smaller coupling, the peaks are narrower and higher.
Those results confirm that we can fully assign the reso-
nances approximately good quantum numbers smol ¼ 1,
S ¼ 3=2, each resonance also has definite MS constrained
by ΔMS ≤ 1 and ≤ 2 selection rules, and J ¼ 1 or 2, for
spin-rotation and spin-spin coupling, respectively, whereas
the N and L quantum numbers are strongly mixed due to
the anisotropic interaction at short range. Figure 5(a) also
implies that the loss mechanisms are the same for resonant
losses and background losses. For the value of λ chosen in
Fig. 5(a), the background loss is higher for the upper spin-
stretched state, but for most values of λ, they are similar, as
observed in the experiment [24].
The coupling mechanism involving the spin-rotation and

spin-spin coupling also requires an anisotropic interaction
potential. The physical picture is that the anisotropic
interaction with the atom can reorient the molecule, and
because the spin is coupled to the molecular axis by spin-
rotation and spin-spin coupling, this can lead to Zeeman
transitions. To confirm this picture we perform calculations
that exclude interaction anisotropy, shown as the dash-
dotted line in Fig. 5(a). The resulting cross section is much
smaller and results from long-range Zeeman relaxation by
the magnetic dipole-dipole coupling. If both the magnetic
dipole-dipole interaction and the interaction anisotropy are
switched off, the cross section in our model vanishes. The
role of the interaction anisotropy is nonperturbative, how-
ever, as can be seen from comparison between the solid and
dotted line in Fig. 5(a), which compares the cross section
from the full calculation to 4 times the cross section
obtained with the interaction anisotropy halved. The crucial
and nonperturbative role of the anisotropic electronic
interaction implies that the spectrum of resonances cannot
be described by a simplified model that accounts only for
the isotropic long-range R−6 interaction, contrary to pre-
vious observations of ultracold atom-molecule resonances
[17]. In summary, the observed losses arise from the
interplay of spin-spin and spin-rotation coupling with the
anisotropic interactions which connect the incoming non-
reactive quartet states to doublet states that can decay to
singlet NaLi or Na2 molecules. This coupling can occur
directly, or via first coupling to nonstretched quartet states.
We make a direct comparison to the scattering calcu-

lations with the density of states computed quantum
mechanically using the same channel basis as used in
the scattering calculations in the accompanying paper [24].
The total number of states from the quasiclassical estimate
is close to the number of resonances from the scattering
calculations, but not in perfect agreement with it, because
of the light masses and relatively weak interactions in the
spin-stretched state. We find that most of the three-body

states are between 20a0 and 40a0, which is in agreement
with the complex size estimated from the simple interpre-
tation of the spacing between resonances as rotational
energy splitting of the collision complex. This size is short
compared to the range of the van der Waals potential, but
much longer than the short-range interactions—the mini-
mum of the potential wells is around 10a0. The resonances
depend on both short-range and long-range physics:
They are supported by the long-range potential, but require
the anisotropic short-range interactions as a coupling
mechanism.
The calculated widths of the resonances vary between 1

and 30 G, in qualitative agreement with the experiment.
Those widths reflect the lifetime since there are no other
broadening mechanisms in our simulations. Experimental
broadening such as finite resolution of magnetic field
strength and magnetic field inhomogeneity is very small
(estimated to be around 100 mG near 1400 G).

V. CONCLUSION AND OUTLOOK

We provide a large-scale map of Feshbach resonances
between ultracold atoms and molecules. We choose colli-
sions between NaLi in the triplet ground state and Na for
the two fully spin-stretched initial collision channels in
the quartet potential. Although the NaLiþ Na mixture is
chemically reactive, there is no reactivity in the quartet
potential; i.e., inelastic collisions require a spin flip to the
doublet potential [18,19]. The possibility of metastable
collision complexes makes this system promising for the
study of Feshbach resonances. Indeed, we observe 8 and 17
resonances within a ∼1400 G range in the upper and lower
stretched states, respectively.
We compare the experimental results to full coupled-

channel calculations for the NaLiþ Na mixture. Even
state-of-the-art quantum-chemistry calculations cannot pre-
dict the position of resonances because of the uncertainty in
the interaction potentials. However, they can provide a deep
understanding of the relevant states and their couplings.
Our simulations show that the resonance states are three-
body complexes in the quartet state with rotational exci-
tation, either of NaLi (quantum number N) or rotation of
Na around NaLi (quantum number L). These complexes
have a typical size of 30a0–40a0. The input state and the
complex state involve different MS, which is necessary for
a magnetic Feshbach resonance. Molecular eigenstates
in different Zeeman levels can be coupled by a strong
anisotropic electronic interaction since the different
molecular Zeeman states have different rotational state
decompositions mainly due to spin-spin coupling and
also spin-rotation coupling. Note that the spin-rotation
and spin-spin coupling depend on the orientation of the
molecular axis and, therefore, provide tensorial couplings
between the spin and the mechanical angular momentum.
Approximately 5=6 of the resonances can be attributed to
spin-spin coupling to states with total mechanical angular
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momentum J ¼ 2, and the remaining 1=6 is attributed to
spin-rotation coupling and assigned J ¼ 1.
The loss of molecules, either the background loss or

via Feshbach resonances, occurs through transition to the
chemically reactive doublet potential, either directly or
through lower Zeeman states of the quartet potential (for
the upper stretched state). These transitions involve an
interplay of the anisotropic electronic interaction with spin-
spin or spin-rotation coupling in the NaLi molecules.
Dipolar transitions are considerably weaker.
Our coupled-channels calculations explain why the

number of observed resonances is smaller for the upper
stretched state. The upper stretched state supports a similar
number of resonances, but several of them are washed out
by the rapid decay of the intermediate complexes to lower-
lying Zeeman states via spin-spin coupling.
The agreement between experiment and calculations

validates the assumptions made in the calculations. At
least for a semiquantitative analysis, it is sufficient to
neglect hyperfine interactions and vibrationally excited
states of the molecules, and use electronic potentials at
fixed nuclear separation for the molecule.
The physical mechanisms we identify in the Naþ

NaLiða3ΣþÞ mixture are unique to molecules in the triplet
or higher-spin state. It would be interesting to study other
bialkali triplet molecules and check if their collision
dynamics is dominated by similar couplings. The only
other case where atom-molecule Feshbach resonances have
been studied involved NaK in the singlet ground state
[16,17]. For this system, the observed Feshbach resonances
were caused by long-range van der Waals interactions
[17,30]. These long-range states then follow regular pat-
terns dictated by the quantum defect theory for a simple
isotropic long-range R−6 interaction [31]. The resonances
we describe here, however, behave quite differently as the
coupling mechanism involves perturbatively the spin-spin
and spin-rotation coupling and the strong nonperturbative
anisotropic interaction at short range. Although the result-
ing resonances are supported by the long-range interaction,
their positions are sensitive to these anisotropic short-range
interactions and hence cannot be described by the regular
patterns predicted by quantum defect theory.
Our work here focuses on the nonreactive quartet

potential to support metastable collisional complexes.
However, recent studies have shown that collisional reso-
nances and collisional complexes should also occur in
highly reactive systems. A single p-wave Feshbach reso-
nance has been observed in collisions between NaLi
molecules in the triplet ground state [21]. This system
has no barrier for reactions. Losses much smaller than the
universal loss rate have been observed in s-wave collisions
between magnetically trapped NaLi molecules in different
hyperfine states of the triplet state [32], a system which
should be highly reactive. Losses far below the universal
rate imply a nonzero reflection probability at short range

and should lead to Feshbach resonances when the magnetic
field tuning creates strong interference between reflections
at short and long range [18,33].
These studies emphasize that our understanding of

reactivity and metastable collisional complexes is incom-
plete, and further experimental explorations are required.
Further studies should involve NaLi in various hyper-
fine states and with various collision partners, as well as
considering other bialkalis. As suggested in Ref. [30], for
nonstretched states, the Fermi contact interaction between
electron and nuclear spin provides another mechanism for
Feshbach resonances. Such broader studies are required to
find out which mechanisms are universal, and which occur
only in specific systems.
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APPENDIX: STATISTICAL ANALYSIS

A statistical analysis of the separations between reso-
nances can provide insight into the nature of the resonant
states. We quantify the resonance statistics of 17 resonances
from Naþ NaLi collisions in the lower stretched state
provided in Table I using the Brody parameter η, which is a
standard measure of chaos. For nonchaotic systems, in
which resonances have no correlations, the distribution
of nearest-neighbor spacings is given by the Poisson
distribution, PPðsÞ ¼ e−s. On the other hand, for chaotic
systems, which emerge when the mean spacing between
bound states is comparable to the coupling strength,
repulsion between energy levels occurs. In this regime,
the distribution of nearest-neighbor spacings is given by
a Wigner-Dyson distribution, PWDðsÞ ¼ ðπ=2Þse−ðπ=4Þs2
[25,26]. The two distributions are smoothly inter-
polated through the Brody parameter η as PBðsÞ ¼
Asηe−½A=ðηþ1Þ�·sηþ1

, known as the Brody distribution, where
A ¼ ðηþ 1Þ · Γðηþ 2=ηþ 1Þηþ1 [34,35]. Here, η ¼ 1 and
η ¼ 0 lead to the Wigner-Dyson and Poisson distributions,
respectively. The cumulative probability function of the
Brody distribution is given as

FBðsÞ ¼ ðηþ 1Þ · ½1 − e−αs
ηþ1 �: ðA1Þ

Figure 6 shows the cumulative probability of resonance
spacing of the 17 resonances from Naþ NaLi collisions in
the lower stretched state. The best fit of the data to Eq. (A1)
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gives η ¼ 1.1ð1Þ, which shows the statistical signature of
quantum chaos.
However, statistical conclusions from only 17 resonan-

ces are tentative. On the basis of our quantum-scattering
calculations, the Wigner-Dyson statistics is not expected
because each resonance can be assigned by MS, J, and MJ
quantum numbers (resonances with different values
for these quantum numbers do not affect each other). In
addition, it is difficult to conclude that the broad trend
of the distribution of resonance widths follows the

Porter-Thomas distribution of resonance widths, PPTðγ̄Þ ¼
γ̄−1=2e−γ̄=2, which is also a statistical character of quantum
chaos. Here, the scaled reduced widths γ̄ ¼ γ0n=hγ0ni, where
γ0n is the resonance width normalized by the resonance
energy, and hγ0ni is the average of γ0n [36]. Figure 7 shows
the histogram of the scaled reduced resonance width
distribution and the Porter-Thomas distribution. Because
of the small statistical sample, it is difficult to compare the
broad trend of the distribution with the Porter-Thomas
distribution. Nevertheless, Fig. 6 represents a purely
empirical analysis of experimental data, which should find
a theoretical explanation (which is probably not quan-
tum chaos).
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