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ABSTRACT

The isotropic and anisotropic coefficients Cl,m
n of the long-range spherical expansion ∼1/Rn (R—the intermolecular distance) of the dispersion

and induction intermolecular energies are calculated using the first principles for the complexes containing an aromatic molecule (benzene,
pyridine, furan, and pyrrole) and alkali-metal (Li, Na, K, Rb, and Cs) or alkaline-earth-metal (Be, Mg, Ca, Sr, and Ba) atoms in their electronic
ground states. The values of the first- and second-order properties of the aromatic molecules are calculated using the response theory with
the asymptotically corrected LPBE0 functional. The second-order properties of the closed-shell alkaline-earth-metal atoms are obtained using
the expectation-value coupled cluster theory and of the open-shell alkali-metal atoms using analytical wavefunctions. These properties are
used for the calculation of the dispersion Cl,m

n,disp and induction Cl,m
n,ind coefficients (Cl,m

n = Cl,m
n,disp + Cl,m

n,ind) with n up to 12 using the available
implemented analytical formulas. It is shown that the inclusion of the coefficients with n > 6 is important for reproducing the interaction
energy in the van der Waals region at R ≈ 6 Å. The reported long-range potentials should be useful for constructing the analytical potentials
valid for the whole intermolecular interaction range, which are needed for spectroscopic and scattering studies.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0135929

I. INTRODUCTION

The study of cold (<1 K) and ultracold (<1 mK) molecules
open prospects in many areas of modern chemical physics and
physical chemistry. For example, ultracold molecules provide a con-
venient platform for high-resolution spectroscopy,1 external control
of chemical reactions,2 and tests of fundamental theories.3 In order
to cool molecules to the ultracold regime, first they have to be
trapped in electric and magnetic fields by one of the numerous exist-
ing techniques.4–6 Next, sympathetic cooling7–10 can potentially be
used in the second stage to achieve even lower sub-mK temperatures
by collisions with ultracold atoms, in which the elastic-to-inelastic
rate ratio should be greater than 100.4

Recently, there has been an increasing amount of experimental
interest in the cooling of polyatomic molecules.11,12 The posses-
sion of additional rotational and vibrational degrees of freedom by
polyatomic molecules opens new prospects for many applications
ranging from quantum computation13 and simulation14 to high-
precision measurements15 and ultracold organic chemistry.16 On

the other hand, the additional degrees of freedom bring up new
challenges for both experiment and theory. The density of vibra-
tional energy levels imposes a desirable requirement on the diag-
onality of Franck–Condon factors, although at the same time, it
complicates cooling due to energy loss resulting from inelastic colli-
sions. The theoretical description of such processes requires careful
treatment or the development of new theoretical methods.16

A big advantage of noble-gas (Rg) atoms as the collision part-
ner is their inertness. The scheme of using such a technique to
cool molecules was proposed theoretically some time ago.17–19 Even
though such a scheme seems promising, only cryogenic tempera-
tures could be achieved. Therefore, the second-stage sympathetic
cooling by collisions with polarizable species, such as ultracold
alkali-metal and alkaline-earth-metal atoms, currently remains the
most important research goal. The theoretical study of such com-
plexes is more difficult than that of the complexes with Rg atoms
due to the higher anisotropy of the potentials, larger binding ener-
gies, and more distinct long-range behavior of the dispersion energy.
Nevertheless, it was recently experimentally shown that the optical
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cycling of functionalized polyatomic molecules containing aromatic
rings is feasible.20,21 This opens the way to laser cooling and trapping
such molecules in cold conditions,22,23 and next to sympathetic cool-
ing them with ultracold metal atoms to even lower temperatures and
applications, e.g., in ultracold organic chemistry.16 Such studies will
require detailed knowledge of intermolecular interactions, including
long-range potentials.

Besides the prospects for sympathetic cooling of aromatic
molecules, there are other reasons for the interest in such com-
plexes. The complexes of pyridine with Li, Ca, and Sr have already
been studied by means of laser spectroscopy.24 The authors used
zero-electron-kinetic-energy spectroscopy to determine binding and
ionization energies as well as intermolecular vibrational energies.
The assignment of the energies requires an accurate potential that
will be used for the solution of the three-dimensional rovibrational
Schrödinger equation.25

The intermolecular interaction energy Eint can be effectively
separated into terms describing different physical effects, such as
electrostatic, induction, dispersion, and exchange. The most rigor-
ous approach to studying such a separation is based on the
symmetry-adapted perturbation theory (SAPT).26 When the dis-
tance R between the monomer centers of mass is large, the exchange
effect vanishes, and the potential can effectively be described by the
spherical multipole expansion, which contains terms proportional
to 1/Rn,27–29 including the first-order electrostatic energy E(1)elst and
the second-order dispersion E(2)disp and induction E(2)ind energies. These
series become divergent for smaller R values, and the interaction
energy Eint defined only through a multipole expansion tends to
unphysically negative values. However, such a long-range potential
is expected to be applicable for the values of R close to the equilib-
rium if the number of expansion terms is large enough. For example,
the inclusion of the long-range dispersion coefficients Cn up to
n = 12 for Rg dimers accurately reproduces the second-order
dispersion E(2)disp even at the equilibrium configurations.30 Moreover,
the long-range series can be useful for the approximate methods in
which the non-dispersion terms are found either at the Hartree–
Fock or dispersionless density functional theory (DFT) level.31,32

In this case, the dispersion terms are multiplied by the appro-
priate damping functions in the short-range region.33–35

This approach gave rise to SAPT+D methods36–38 and a
widely used dispersion-corrected density functional theory
(DFT-D).39,40

The complexes of aromatic molecules with polarizable atoms,
such as alkali-metal and alkaline-earth-metal atoms, when com-
pared to the complexes of aromatic molecules with Rg atoms,25,41

are characterized by higher magnitudes of the polarization terms due
to the larger values of polarizabilities of the metal atoms. Therefore,
an accurate description of the long-range potentials for such com-
plexes is crucial for creating reliable potentials valid in the whole
physically relevant interaction range. An initial theoretical study of
the complexes of aromatic molecules with alkali-metal and alkaline-
earth-metal atoms has already been performed by one of us.42 That
study focused on the complexes with aromatic molecules, such as
benzene, naphthalene, and azulene. It included the calculation of the
leading long-range dispersion and induction coefficients, as well as
the construction of analytical potentials derived from the ab initio
coupled-cluster method restricted to single, double, and noniterative

triple excitations [CCSD(T)] calculations. Other theoretical works
on similar complexes mostly focused on studying equilibrium
structures.43–47

The goal of the present work is to improve the long-range
potential for the complexes with benzene by including more terms
in the multipole expansion series than that has been done using the
first principles methods.42 The study of the complexes with benzene
is important because benzene is a prototypical molecule of high sym-
metry. However, the lack of the electric dipole moment complicates
its experimental study in external fields. Therefore, a few other typi-
cal single-ring aromatic molecules with non-zero dipole moments,
such as pyridine, furan, and pyrrole, are also investigated in our
study. In this way, our work establishes the computational scheme
for calculating the long-range interaction coefficients between small
aromatic molecules and polarizable metal atoms, which can be useful
for constructing potential energy surfaces (PESs) between laser-
coolable functionalized aromatic molecules20,21 and metal atoms for
scattering calculations to predict and guide sympathetic cooling in
upcoming experiments at ultralow temperatures.22,23

This article is organized as follows: In Sec. II, the theoretical
and computational methods employed in this work are explained.
Section III presents the results, and Sec. IV contains the conclusions
of the work and future prospects.

II. COMPUTATIONAL AND THEORETICAL METHODS
A. Long-range potentials

Let us consider two interacting non-linear molecules, A and B,
in their electronic ground states. The interaction energy in the long
range is defined by the multipole expansion27,29

Eint(R, ωA, ωB) = ∑
LAKALBLBL

CLAKALBLBL
n

Rn

× ALAKALBLBL(ωA, ωB, Ω), (1)

where R = (R, Ω) = (R, Θ, Φ) is the vector connecting the monomer
centers of mass, and the orientations of the molecules A and
B are described by the Euler angles ωA = (αA, βA, γA) and ωB
= (αB, βB, γB) in the molecule-fixed reference frame. The angular
functions are given by

ALAKALBLBL(ωA, ωB, Ω) = ∑
MAMBM

⎛
⎜
⎝

LA LB L

MA MA M

⎞
⎟
⎠

×DLA
MAKA
(ωA)

⋆DLB
MBKB
(ωB)

⋆CL
M(Ω), (2)

where DL
MK(ω) are the standard rotation Wigner matrices, CL

M(Ω)

are the Racah normalized spherical harmonics, and ( LA LB L

MA MA M
)

are the 3−j symbols.27,48,49

The long-range general formulas for the calculation of
CLA ,KA ,LB ,KB ,L

n have been derived before.27,29,50–52 The electrostatic,
induction, and dispersion coefficients are given by the following
expressions:
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CLA ,KA ,LB ,KB ,L
n,elst = (−1)LA δLA+LB ,Lδn,L+1

× [
(2LA + 2LB + 1)!
(2LA)!(2LB)!

]

1/2

QLA
KA

QLB
KB

, (3)

CLA ,KA ,LB ,KB ,L
n,ind (A→ B) = −

1
2

lA+l′A+lB+l′B+2=n

∑
lA l′A lB l′B

ζLALBL
lA l′A lB l′B

lA
∑

mA=−lA

(−1)KA

×
⎛
⎜
⎝

lA l′A LA

mA KA −mA −KA

⎞
⎟
⎠

lB
∑

mB=−lB

× (−1)KB
⎛
⎜
⎝

lB l′B LB

mB KB −mB −KB

⎞
⎟
⎠

× αlB l′B
mBKB−mB

(0)QlA
mA Ql′A

KA−mA
, (4)

TABLE I. The values of the static electric dipole and quadrupole polarizabilities αll

(l = 1, 2) for alkali-metal and alkaline-earth-metal atoms and the long-range dis-
persion coefficients Cn = Cn,disp (n = 6, 8) for their homodimers. The upper rows
contain our results, and the lower ones are the results from Ref. 58 for α11 and C6
and from Ref. 56 for α22 and C8 (except for Cs and Ba). All values are in atomic units.

Atom/Dimer α11
(×102

) α22
(×103

) C6(×103
) C8(×104

)

Li 1.648 1.393 1.395 8.148
1.640 1.424 1.389 8.352

Na 1.608 1.796 1.506 10.847
1.626 1.881 1.556 11.600

K 2.897 4.703 3.750 38.159
2.902 5.018 3.897 42.070

Rb 3.195 6.068 4.456 51.199
3.186 6.480 4.690 52.701

Cs 4.041 10.259 6.434 91.825
3.998 10.470a 6.846 102a

Be 0.377 0.297 0.214 1.013
0.378 0.301 0.214 1.022

Mg 0.717 0.809 0.638 4.171
0.713 0.814 0.627 4.164

Ca 1.574 3.035 2.193 22.500
1.571 3.063 2.121 22.60

Sr 1.962 4.477 3.207 37.753
1.972 4.577 3.103 38.54

Ba 2.710 8.225 5.413 77.28
2.735 8.900b 5.160 77.2b

aResults from Ref. 59.
bResults from Ref. 55.

CLA ,KA ,LB ,KB ,L
n,disp = −

lA+l′A+lB+l′B+2=n

∑
lA l′A lB l′B

ζLALBL
lA l′A lB l′B

lA
∑

mA=−lA

(−1)KA

×
⎛
⎜
⎝

lA l′A LA

mA KA −mA −KA

⎞
⎟
⎠

lB
∑

mB=−lB

(−1)KB

×
⎛
⎜
⎝

lB l′B LB

mB KB −mB −KB

⎞
⎟
⎠

× 8π∫
∞

0
αlA l′A

mAKA−mA
(iω)αlB l′B

mBKB−mB
(iω)dω, (5)

where the coefficients ζLALBL
lA l′A lB l′B

are defined in Ref. 29 and the for-
mulas are written through the Clebsch–Gordan coupled product of
spherical tensors. The frequency-dependent polarizability αll′

mm′(iω)
is defined through the conventional spherical harmonics basis Y lm.29

The tensor αll′
mm′(iω) can be transformed to a form α̃ll′

mm′(iω) defined
in the basis of the tesseral harmonic cosine and sine functions. The
induction coefficients CLA ,KA ,LB ,KB ,L

n,ind (A→ B) define the interaction
of the permanent multipole moments of A with the static polariz-
abilities of B. The coefficients CLA ,KA ,LB ,KB ,L

n,ind (B→ A) are defined in
a similar manner with the interchanged symbols A ↔ B. The total
induction coefficients are then defined as the sum of the B→ A and
A→ B coefficients.

The formulas given by Eqs. (3)–(5) have been implemented
in the POLCOR package.53 The calculation of the electrostatic coef-
ficients is rather straightforward, while the dispersion and induc-
tion ones can be calculated using two programs from the pack-
age, DISPER and INDUCT. The programs use the polarizabilities
α̃ll′

mm′ and multipole moments Ql
m as the input. From now on, we

skip the over-tilde symbol notation and use αll′
mm′ only.

When two interacting atoms are in their ground S-states,
there is no angular dependence L = LA = LB = KA = KB = 0, and the
long-range coefficients are represented only by the dispersion part
described by the n index, Cn,disp (n = 6, 8, 10, . . .). More details on
this case are given in the supplementary material.

TABLE II. The values of the electric dipole moment μ, the components of the electric
quadrupole moment Q2

m and the static electric dipole–dipole polarizabilities α11
mm′

for
the studied aromatic molecules. The first row contains DFT response results, and the
second one contains the finite-field CCSD(T) results. All values are in atomic units.

Molecule μ Q2
0 Q2

2 α11
00 α11

11 α11
−1−1

Benzene 0 −5.83 0 44.41 81.19 81.19
0 −5.82 0 44.29 79.20 79.20

Pyridine 0.93 −3.74 −4.54 40.61 77.84 73.24
0.89 −3.73 −4.53 40.41 75.87 71.64

Furan −0.25 −4.38 −2.41 34.69 58.80 53.01
−0.26 −4.35 −2.51 34.48 56.65 52.70

Pyrrole 0.73 −6.36 2.09 37.04 60.94 64.26
0.72 −6.38 2.03 38.55 60.54 62.67
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In the case of a closed-shell nonlinear molecule A and an
atom B in the ground S-state, such as the complexes of aromatic
molecules with alkali-metal and alkaline-earth-metal atoms, the
angular dependence is present only for molecule A, for which we use
the notation L = LA = l and K = KA = m. We use the notation Cl,m

n
for such complexes, where Cl,m

n is the sum of the dispersion Cl,m
n,disp

and induction Cl,m
n,ind (A→ B) coefficients. The Cl,m

n,ind (B→ A) and
Cl,m

n,elst vanish for the complexes due to the absence of permanent
multipole moments in the atoms. The expression for the long-range
dispersion energy, in this case, can be written as follows:

Edisp(R, θ, ϕ) = −
∞

∑
n=6

∞

∑
l=0

l

∑
m=−l

Cl,m
n,disp

Ri Ωlm(θ, ϕ), (6)

where Ωlm(θ, ϕ) is the tesseral harmonics basis.29 The maximum
values of n and l that are physically relevant are usually taken
up to 12 and 6, respectively. The term with n = 6 describes the
dipole–dipole coupling of the dynamic polarizabilities of the inter-
acting monomers. The expression for the long-range induction
energy is analogous. In this case, the term with n = 6 is defined
by the coupling of the dipole moment and static dipole–dipole
polarizabilities. Additional restrictions on the l, m values stem from

the symmetry of the monomer. For example, benzene has the D6h
point group symmetry, and hence, l = 0, 2, 4, . . . and m = 0, 6, . . . are
allowed. Since benzene has zero dipole moment, the summation for
Eind corresponding to that for Edisp in Eq. (6) starts from n = 8. In the
case when the monomer has the C2v symmetry like furan, pyridine,
and pyrrole, there are no sine-type (m < 0) tesseral harmonics in the
expansion given by Eq. (6).

In order to calculate the sets of the long-range coefficients, one
would need to provide the first- and second-order properties of the
monomers as the input for the calculation of Cl,m

n of the studied com-
plexes employing the approach described earlier. The theoretical and
computational methods employed for the calculation of αll′

mm′(iω)
and Ql

m are explained in Secs. III B and III C.

B. Alkali-metal and alkaline-earth-metal atoms
The long-range potentials for alkali-metal and alkaline-earth-

metal homo- and hetero-dimers, including their electronically
excited states, were reported in numerous previous studies.54–58

However, in Ref. 58, only the dipole–dipole polarizabilities α11
(iω)

were tabulated for the given values of ω on the Gauss–Legendre
quadrature grid. Even though the reported results are accurate,
the POLCOR package employs a different type of quadrature—the

TABLE III. The selected values of the long-range dispersion Cl,m
n,disp and induction Cl,m

n,ind coefficients (in atomic units) for the
complexes of aromatic molecules with alkali-metal atoms.

Complex C0,0
6,disp(×103

) C0,0
6,ind(×102

) C2,0
6,disp(×102

) C2,0
6,ind(×102

) C0,0
8,disp(×105

) C0,0
8,ind(×104

)

Benzene-
Li 1.018 0 −3.853 0 0.980 0.839
Na 1.103 0 −4.156 0 1.116 0.819
K 1.583 0 −6.026 0 1.875 1.475
Rb 1.710 0 −6.516 0 2.117 1.627
Cs 1.979 −7.564 0 2.661 2.058

Pyridine-
Li 0.946 1.426 −3.671 −1.594 0.839 1.157
Na 1.026 1.391 −3.961 −1.555 1.019 1.223
K 1.472 2.505 −5.739 −2.801 1.715 2.521
Rb 1.590 2.762 −6.206 −3.089 1.937 2.971
Cs 1.840 3.494 −7.202 −3.907 2.438 4.316

Furan-
Li 0.730 0.091 −2.278 −0.111 0.626 0.638
Na 0.791 0.097 −2.463 −0.108 0.716 0.629
K 1.133 0.174 −3.552 −0.195 1.222 1.156
Rb 1.224 0.192 −3.840 −0.215 1.385 1.288
Cs 1.415 0.241 −4.451 −0.271 1.753 1.668

Pyrrole-
Li 0.811 0.871 −2.555 −0.182 0.706 1.138
Na 0.879 0.850 −2.761 −0.950 0.808 1.318
K 1.260 1.530 −3.987 −1.711 1.376 2.567
Rb 1.362 1.688 −4.310 −1.887 1.560 2.948
Cs 1.575 2.134 −4.996 −2.386 1.972 4.069
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Chebyshev–Gauss one. Moreover, one would also need αll
(iω) for

l > 1, which was never provided in numerical form in the literature.
Therefore, we decided to calculate the polarizabilities αll

(iω) with
l up to 4 for the metal atoms.

First, we have implemented the theoretical approach reported
in Ref. 54 for the calculation of the static and dynamic multi-
pole polarizabilities of alkali-metal atoms. Within this approach,
the approximate analytical wavefunctions for the systems with one
valence electron are used. Such an approach is convenient because
it requires no additional electronic structure calculations and gives
good agreement with other theoretical methods. The Maple software
package was used for that purpose.

The alkaline-earth-metal atoms are closed-shell, which sim-
plifies the calculation of their properties using the implemented
electronic structure methods. We used the explicitly connected
representation of the expectation value of a one-electron opera-
tion and the CCSD polarization propagator.60,61 For heavy Sr and
Ba, this method was used together with the relativistic spin-free
Douglas–Kroll–Hess (DKH) Hamiltonian.62,63 The core-electron
correlation effects were taken into account in these calculations.
It was shown previously in Refs. 30, 34, 64, and 65 for noble-gas
atoms that the second-order properties are sensitive to the pres-
ence of additional diffuse functions in the basis sets. Therefore,

in order to obtain the values of αll
(iω) close to the convergence

limit, we used the triply augmented Dunning’s basis sets with dif-
fuse even-tempered functions and additional tight core-correlated
functions—t-aug-cc-pwCV5Z for Be and Mg,66 t-aug-cc-pwCVQZ
for Ca, t-aug-cc-pwCVQZ-X2C for Sr, and t-aug-cc-pwCVTZ-X2C
for Ba.67 One has to note that the t-aug-cc-pwCVQZ-X2C basis
set is available for Ba, but we experienced some convergence prob-
lems with this basis set and used the smaller t-aug-cc-pwCVTZ-X2C
one.

Table I presents the calculated values of the static electric
dipole and quadrupole polarizabilities αll, l = 1, 2, for alkali-metal
and alkaline-earth-metal atoms, as well as the dispersion coefficients
Cn,disp with n = 6, 8 for their homodimers. The Cn,disp coefficients
were calculated on an excessive quadrature grid with N = 50 points
to guarantee the convergence of the numerical integration. As shown
in Table I, the agreement is better than 3% for most of the quan-
tities, confirming our good choice of the methods used. One has
to note that our results for alkali atoms are slightly different from
those obtained in Ref. 54 because we did not use any approximations
of the hypergeometrical function. The calculated values of αll

(iω)
for l = 1, 2, 3, 4 at the grid of iω, as well as the higher-order Cn,disp
coefficients for the homodimers with n up to 12 are given in the
supplementary material.

TABLE IV. The selected values of the long-range dispersion Cl,m
n,disp and induction Cl,m

n,ind coefficients (in atomic units) for the
complexes of aromatic molecules with alkaline-earth-metal atoms.

Complex C0,0
6,disp(×103

) C0,0
6,ind(×102

) C2,0
6,disp(×102

) C2,0
6,ind(×102

) C0,0
8,disp(×105

) C0,0
8,ind(×104

)

Benzene-
Be 0.563 0 −2.006 0 0.454 0.192
Mg 0.932 0 −3.360 0 0.838 0.365
Ca 1.580 0 −5.725 0 1.731 0.801
Sr 1.899 0 −6.875 0 2.199 0.999
Ba 2.416 0 −8.758 0 3.038 1.380

Pyridine-
Be 0.512 0.327 −1.859 −0.365 0.414 0.260
Mg 0.851 0.620 −3.117 −0.694 0.764 0.547
Ca 1.474 1.361 −5.465 −1.521 1.583 1.473
Sr 1.771 1.696 −6.563 −1.897 2.012 1.986
Ba 2.254 2.344 −8.359 −2.621 2.784 3.186

Furan-
Be 0.400 0.023 −1.184 −0.025 0.285 0.146
Mg 0.660 0.043 −1.976 −0.048 0.532 0.281
Ca 1.142 0.094 −3.443 −0.106 1.123 0.635
Sr 1.373 0.118 −4.134 −0.132 1.434 0.802
Ba 1.745 0.163 −5.261 −0.182 1.996 1.139

Pyrrole-
Be 0.441 0.200 −1.322 −0.223 0.321 0.293
Mg 0.730 0.379 −2.207 −0.424 0.599 0.589
Ca 1.263 0.831 −3.851 −0.930 1.261 1.458
Sr 1.519 1.036 −4.624 −1.158 1.609 1.909
Ba 1.932 1.432 −5.885 −1.600 2.240 2.907
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C. Aromatic molecules
As the next step, we calculated the first- and second-order

electric properties of the selected aromatic molecules using their
available empirical and theoretical equilibrium geometries.68–71 The
components of the multiple moments and polarizabilities may
depend on the choice of the coordinate frame. We put the center
of the frame at the monomer’s center of mass, putting the N or O
atoms (C for benzene) on the x-axis. The x-coordinates of N atoms
in pyridine and pyrrole are positive, and the coordinate of the O
atom in furan is negative. The values of the Cartesian geometries
of the molecules are given in the supplementary material.

The electronic structure calculations for such large molecules
are challenging and rather time-consuming. Therefore, our choice
of method must be a compromise between accuracy and compu-
tation cost. The static properties can be calculated using the finite
field (FF) approach.72 In such a way, the values of the electric dipole
μ = Q1

1, non-zero components of the electric quadrupole moment,
and electric dipole–dipole static polarizabilities were first calculated
using the FF with the CCSD(T) method. The augmented Dunning’s
quadruple zeta basis set (aug-cc-pVQZ)73 and the value of the
external field perturbation equal to 0.001 a.u. were used for these cal-
culations. The calculated properties are collected in Table II and can
be considered the benchmark. However, such an approach becomes
inconvenient for higher orders of multipole moments and polariz-
abilities due to the dependence on the value of the field increment
and the accuracy of the finite difference formulas used. Moreover,
one also needs the values of dynamic polarizabilities, which cannot
be calculated by this method.

Therefore, we used the density functional theory (DFT)
response approach for the calculation of the static and dynamic
properties, Ql

m and αll′
mm′(iω) with l up to 4.64,74,75 The density fitting

approximation with the LPBE0ac exchange–correlation functional
and the adiabatic local-density approximation (ALDA)76–79 kernel
together with the gradient regulated asymptotic correction (AC)
with the Leeuwen–Baerends exchange–correlation potential were
employed for the DFT response calculations.80,81 We previously
used this function for the calculation of the interaction energies

for a series of complexes of aromatic molecules with Ar atoms
using DFT-SAPT.82,83 The following values of the AC were taken:
0.072, 0.075, 0.072, and 0.077 a.u. for benzene, pyridine, furan, and
pyrrole, correspondingly. We calculated these corrections as the
difference between the negative LPBE0 HOMO energies and the
PBE0 ionization potentials. The atomic orbital basis sets aug-cc-
pVQZ with auxiliary aug-cc-pVQZ-JKFIT were employed for these
calculations.84,85 Unfortunately, we were not able to use the larger
basis set for these calculations due to convergence problems and
the linear dependence of the basis set functions. Therefore, one can
expect that the values of αll′

mm′(iω)may be not fully converged, espe-
cially for higher l values. The grid of (iω) was taken the same as in
Sec. II B for alkali-metal and alkaline-earth-metal atoms.

The comparison of the static properties calculated with the
DFT response and the CCSD(T) benchmark is given in Table II.
As shown, the deviation of the DFT response results from their
CCSD(T) counterparts does not exceed 2%–3% for most of the
values being somewhat higher for pyridine. The full sets of calcu-
lated values of Ql

m and αll′
mm′(iω) with l up to 4 are given in the

supplementary material.
The developer’s version of the Molpro package was used for the

calculations of the properties of the alkaline-earth-metal atoms and
the aromatic molecules.86

III. RESULTS
The selected values of the leading long-range dispersion Cl,m

n,disp

and induction Cl,m
n,ind coefficients are presented in Tables III and IV,

respectively, for the complexes of aromatic molecules with alkali-
metal and alkaline-earth-metal atoms. The remaining coefficients,
with n up to 12 and l up to 6, are given in the supplementary material.
We have to note that the coefficients with n = 11, 12, and m ≠ 0
also depend on the first- and second-order properties with l > 4,
which were not used in this work. However, it is expected that the
contribution from these neglected higher quantities is minor.

Our values of C6,0
disp and C6,2

disp for the complexes with benzene are
very similar to those obtained in Ref. 42. However, our values C6,2

disp

FIG. 1. Plots of the functions f nm(R) = Enm
disp(R, θ, ϕ)/E12

disp(R, θ, ϕ) (nm = 6, 8, 10) for the pyridine–Li complex at different geometries given by fixed values of (θ, ϕ)
(in degrees).
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FIG. 2. Plots of the functions f nm(R) = Enm
disp(R, θ, ϕ)/E12

disp(R, θ, ϕ) (nm = 6, 8, 10) for the furan–Sr complex at different geometries given by fixed values of (θ, ϕ)
(in degrees).

are two times larger due to a different normalization factor used for
the spherical harmonics. The complexes with aromatic molecules
with a non-zero dipole moment acquire the coefficients Cl,m

n with
odd n values. Thus, C7,1

disp describes the interactions of the anisotropic

part l ≠ l′ of the dipole–dipole polarizability αll′
mm′ of an aromatic

molecules with α11 of a metal atom.
The absolute values of the coefficients presented in Tables III

and IV grow as the atomic number of the interacting metal atoms
grows in each group of elements, with a few exceptions for Li and Na.
This can be explained by the fact that the dipole–dipole polarizabil-
ity of Na is slightly lower than that of Li (see Table I). A comparison
of the induction coefficients Cl,m

n,ind reveals that the coefficients for the
complexes with alkali-metal atoms are larger than for the complexes
with alkaline-earth-metal atoms from the same row of elements.
This is in agreement with the fact that the alkali-metal atoms have
higher polarizabilities than the corresponding alkaline-earth-metal
atoms. However, there is no such regularity for the dispersion coef-
ficients Cl,m

n,disp, because these coefficients also depend on the behavior

of the frequency-dependent functions αll′
mm′(iω).

Figures 1 and 2 present the results for the pyridine–Li com-
plex and furan–Sr complex, respectively, where the comparison of
the long-range dispersion energy Enm

disp(R, θ, ϕ) found with different
values of nm—the maximum power of the terms 1/Rn in Eq. (6)—are
plotted at different values of angles (θ, ϕ). As shown, the terms with
only n = 6 are up to three times smaller than their counterparts with
nm = 12 in the region R ∼ 6 Å. The largest deviation is observed
at θ = 90○. The difference between nm = 10 and nm = 12 is hardly
noticeable, even for smaller R values.

A Fortran 90 routine for the calculation of the long-range
interaction energy Eint = E(2)disp + E(2)ind from the sets of Cl,m

n = Cl,m
n,disp

+ Cl,m
n,ind is available in the supplementary material.

IV. CONCLUSIONS AND FUTURE PROSPECTS
We have presented the long-range potentials for a series of

complexes containing an aromatic molecule (benzene, pyridine,

furan, and pyrrole) with alkali-metal and alkaline-earth-metal
atoms. In order to obtain these potentials, we not only repro-
duced the second-order properties of alkali-metal atoms using an
analytical approach but also calculated these properties for alkaline-
earth-metal atoms using an accurate ab initio method based on the
expectation-value coupled cluster theory. We have also shown that
the DFT response method reproduces the static first- and second-
order properties of the aromatic molecules with high accuracy. This
was done by the comparison of the DFT response results with their
CCSD(T) counterparts calculated using the finite field approach for
the static properties.

The sets of the long-range dispersion Cl,m
n,disp and induction

Cl,m
n,ind coefficients have been calculated using the available first prin-

ciples analytical formulas. It has been shown that it is important to
include the terms with n > 6 for a more accurate description of the
interaction energy in the van der Waals region. The reported long-
range potentials can complement the potentials used to study the
dynamics of the considered complexes. Further study will include
the calculation of the vibrational bound states and cross sections
of elastic and inelastic scattering using the implemented theoretical
approaches.25,41,87

The proposed approach applies not only to numerous other
complexes of single-ring aromatic molecules with alkali-metal and
alkaline-earth-metal atoms but also to other polyatomic molecules
prospective for ultracold cooling. An interesting extension of the
approach applicable to longer polycyclic molecules, such as tetracene
and anthracene, might be multi-center expansion.35 However, such
an approach would require some sophisticated angular momentum
algebra. The complexes with large aromatic molecules also revealed
another type of problem—the need for multireference wavefunc-
tions for the calculation of the supermolecular interaction energy in
some regions of the PES.42

Finally, an accurate description of the long-range intermolecu-
lar interactions is very important for ultracold physics and chemistry
studies.2 Scattering properties at ultralow temperatures are very sen-
sitive to tiny details of the PES,88 including interactions at large
distances where quantum tunneling and reflection from a centrifugal
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barrier happen. Therefore, we expect our results to be useful in
developing and investigating theoretically sympathetic cooling and
controlled chemical reactions of polyatomic functionalized aro-
matic molecules20,21 immersed in ultracold atomic gases, which will
be realized in upcoming experiments aimed at the formation and
application of polyatomic molecules at ultralow temperatures.

SUPPLEMENTARY MATERIAL
The supplementary material contains the following data:

● A Maple routine for generating the static and dynamic
polarizabilities of alkali-metal atoms for any value of l
and ω.

● Calculated static and dynamic multipole polarizabilities for
l up to 4 at the given grid points of ω for alkali-metal and
alkaline-earth-metal atoms.

● Values of multipole moments and static and dynamical
polarizabilities for the studied aromatic molecules for l up
to 4.

● Dispersion coefficients Cn,disp for alkali-metal and alkaline-
earth-metal homodimers with n up to 12.

● Sets of Cl,m
n,disp and Cl,m

n,ind for the complexes of aromatic
molecules with metal atoms with n up to 12.

● A Fortran 90 routine for converting the calculated sets of
long-range Cl,m

n coefficients to the interaction energy Eint.
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