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Crossover between few and many fermions in a harmonic trap
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The properties of a balanced two-component Fermi gas in a one-dimensional harmonic trap are studied by
means of the coupled-cluster method. For few fermions we recover the results of exact diagonalization, yet with
this method we are able to study much larger systems. We compute the energy, the chemical potential, the pairing
gap, and the density profile of the trapped clouds, smoothly mapping the crossover between the few-body and
many-body limits. The energy is found to converge surprisingly rapidly to the many-body result for every value
of the interaction strength. Many more particles are instead needed to give rise to the nonanalytic behavior of
the pairing gap, and to smoothen the pronounced even-odd oscillations of the chemical potential induced by the
shell structure of the trap.
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Ultracold gases are ideal systems for engineering highly
nontrivial states of matter. They allow one to prepare, ma-
nipulate, and measure with great accuracy strongly correlated
quantum systems [1–3]. Thus, they provide a perfect play-
ground for classical simulations, and can accurately serve as
quantum simulators [4]. One-dimensional (1D) systems are
particularly fascinating because of the important role played
by quantum fluctuations [5]. Experimental studies of strongly
correlated ultracold atomic gases started with the seminal
works on the Tonks-Girardeau gas [6–8]. More recently,
the super Tonks-Girardeau regime has been achieved [9],
and the first experiments with fermions with a tunable spin
have been launched [10]. For this Rapid Communication,
particularly relevant are experiments on two-component Fermi
gas performed in 1D harmonic traps containing very few
atoms, where the number of spin-up and spin-down atoms may
be fully, and separately, controlled [11–15]. The theoretical
studies of 1D Fermi gases in the many-body regime have
a long tradition [16–27]. More recently, several papers have
addressed in detail the few-body case, and its evolution towards
the many-body regime [28–37].

In order to address increasingly more elaborate experimen-
tal findings, the efficient numerical treatment of many-body
quantum systems stands as one of the great challenges of
modern physics. Despite enormous progress and the develop-
ment of many powerful approaches [cf., e.g., density functional
theory [38], exact diagonalization [39,40], quantum Monte
Carlo (QMC) [26,40,41], density matrix renormalization
group (DMRG), and tensor network states [42,43]], new
numerical approaches that are able to investigate hitherto
unexplored phenomena are always more than welcome.

In this Rapid Communication, we study a balanced two-
component Fermi gas in a one-dimensional harmonic trap by
means of a quantum chemistry approach—the coupled-cluster
(CC) method [44–51]. In condensed matter, this method has
up to now been successfully applied to spin-1/2 lattice models
in 1D and 2D (see Refs. [52,53] and references therein), and
to trapped ultracold bosons [54,55]. However, the CC method

is ideally suited to study fermionic systems, where the number
of occupied orbitals grows at least as fast as the number of
particles in the system, even in the absence of interactions. CC
recovers results known from exact diagonalization [35] and
a path-integral approach [56], but it also allows one to study
much larger systems (up to �80 particles). QMC methods
permit one to look at even bigger clouds [26]; ground-state
properties may be studied by means of the very accurate
diffusion QMC, while finite temperatures may be considered
via path-integral MC. Finally, CC compares well with the
state-of-art DMRG calculations [27], with the advantage,
however, of being a method explicitly working in continuous
space rather than in a lattice.

Here, we compute with high precision the energy, the
chemical potential, the pairing gap, and the density profile of
the fermionic gas as a function of the number of particles and
of the interaction strength. While the ground-state energy of
the system converges astonishingly rapidly to the many-body
result for any interaction strength, the other quantities depend
more sensitively on system size and interaction strength.
In particular, strong even-odd oscillations in the chemical
potential of the trapped gas persist up to a very large
number of particles, and the nonanalytic behavior of the BCS
pairing gap emerges only relatively slowly with the system
size.

Model. We consider a two-component Fermi gas containing
N = N↑ + N↓ atoms in a balanced configuration, i.e., with
N↑ = N↓. All atoms have the same mass m, and they are bound
to move along one dimension due to the presence of a strong
transverse confinement. Along the axial direction the atoms
are further confined by a harmonic potential of frequency
ω, and they interact by means of a short-range (contact)
interaction of strength g. The corresponding Hamiltonian is
then

H =
N∑

i=1

(
p2

i

2m
+ mω2z2

i

2

)
+ g

∑
i<j

δ(zi − zj ). (1)
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In the absence of interactions, the total energy of the trapped
gas is E

(0)
N = N2

�ω/4, while the Fermi energy (defined as the
energy of the first unoccupied level) is EF = (N + 1)�ω/2.
The interaction strength may be suitably parametrized in
terms of the dimensionless constant γ = (πg/

√
N )/(�ωaz),

where az = √
�/mω is the harmonic oscillator length. As the

interactions are varied, the system continuously evolves from a
Tonks-Girardeau (TG) gas of N strongly repulsive fermions (at
γ � 1) to a Lieb-Liniger (LL) gas of N/2 hard-core bosonic
dimers (at γ � −1) [18].

Full configuration interaction (FCI) and CC methods. The
exact solution of the many-body Schrödinger equation of a
fermionic system can always be written as a linear combination
of all Slater determinants that may be obtained from a complete
set of one-particle basis functions. In a numerical solution,
however, only a finite number nb of functions may generally
be taken into account. The simplest approximation to the
exact wave function is the Slater determinant |�〉 obtained by
solving the mean-field Hartree-Fock (HF) equations. The best
possible solution in a given finite basis set can be obtained
by expanding the wave function in all Slater determinants
that may be obtained by replacing (i.e., exciting) one-particle
functions in |�〉, and optimizing variationally the coefficients
in the resulting linear combination. This method is termed full
configuration interaction (FCI) [58], or exact diagonalization,
and it provides a strict upper bound to the exact ground-state
energy. The computational cost of an FCI calculation scales
as N2nN+2

b for nb � N [59], which forces a tradeoff between
the number of particles in the system and the number of basis
functions nb needed to accurately describe it. At present, we are
limited to nb ≈ 50 for N = 6. One possible way to overcome
this obstacle is to limit the number of excitations included in
the FCI wave function. This leads to considerable savings of
computer time, but unfortunately any truncated CI calculation
is size inconsistent, in the sense that the total energy of two
systems, not interacting with each other, is not guaranteed to
be the sum of the energies of the two systems.

To overcome the size-consistency problem, the coupled-
cluster (CC) method was introduced, first in nuclear
physics [60] and shortly after in quantum chemistry [45]. The
CC wave function is given by the exponential ansatz

|�〉 = eT̂ |�〉, (2)

where T̂ = T̂1 + T̂2 + · · · + T̂N is the sum of all possible
excitation operators T̂k replacing k HF one-particle orbitals
in the reference Slater determinant with k orbitals which
are not present in |�〉. Due to the exponential form of the
ansatz (2), the CC method truncated to single and double
excitations effectively includes various triply, quadruply, and
higher excited determinants, since it contains, e.g., the products
T̂1T̂2 and T̂ 2

2 . The CC method including all excitations is
obviously equivalent to the FCI method, and its computational
cost is equally high. However, truncated CC calculations
are, by construction, size consistent, and are much less time
consuming than FCI with the same basis set size nb. In the
present work we use the coupled-cluster method restricted to
single, double, and noniterative triple excitations, CCSD(T),
whose computational complexity scales as n7

b [61]. The
CCSD(T) method is very accurate for many properties of atoms

and molecules, and it is now considered the golden standard
of quantum chemistry [50].

We construct our many-body wave function by expanding
it on the restricted basis containing the first nb single-
particle eigenfunctions of the 1D harmonic oscillator, φn(z) =
Hn(z/az) exp(−z2/2a2

z )/
√

2nn!az

√
π , with Hn(·) a Hermite

polynomial. A detailed study of the convergence with the type
of excitations included in the coupled-cluster model and the
size of the basis set have been reported elsewhere [62]. For
the purposes of this work, we simply note that the CCSD(T)
method appears to be the best choice for 1D fermionic systems,
in terms of the tradeoff between accuracy and computational
cost. As the energy is found to converge to the exact value
with a rate ∼1/

√
nb, all results presented here are obtained

by extrapolating to the limit of infinite basis set with a
quadratic interpolation versus 1/

√
nb passing through the

energies obtained for three values of nb up to 200. The FCI and
CC calculations were performed with customized versions of
the HECTOR [63] and ACES II codes [64], respectively.

Results. We start by considering the ground-state energy
EN of a balanced ensemble of N interacting fermions in
the trap. In order to appropriately compare ensembles with
different numbers of particles, in Fig. 1 we plot the di-
mensionless quantity EN = EN/E

(0)
N as a function of the

rescaled interaction strength γ . The result is analytic for the
simplest case of two (1 + 1) particles, and is the solution of
the implicit equation [57]

1

g
= 	(3/2 − E2/2)√

2(E2 − 1)	(1 − E2/2)
. (3)

In the thermodynamic limit of an infinite number of particles,
instead, the analytic result E∞ can be obtained by applying
the local-density approximation (LDA) to the solution of the
Gaudin-Yang (GY) integral equations describing a homoge-
neous gas [18]. We start by noticing that the results in the two
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FIG. 1. (Color online) Rescaled energies EN = EN/E
(0)
N for var-

ious number of fermions, as a function of the interaction strength γ .
The squares and circles are, respectively, the results of the FCI and CC
calculations. The black dashed line is the analytic two-body result E2

for 1 + 1 particles [57], and the red dotted line is the thermodynamic
result E∞ obtained from the GY+LDA approach [18]. The inset
shows the difference E∞ − E2 vs γ , which remains surprisingly small
for every interaction strength.
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FIG. 2. (Color online) Difference between the rescaled few-body
energies and the analytical two-body result; solid circles (squares) are
the CC (FCI) results, while the red dotted line is the GY+LDA result.
The insets are vertical cuts across the main figure (i.e., at fixed γ ),
plotted as a function of 1/N . The bright green dots are the expected
many-body limit, and the open circles are the first-order perturbation
approximation, Eq. (4).

extreme limits are actually surprisingly close to each other.
As shown in the inset of Fig. 1, the many-body and two-body
rescaled energies differ by less than 0.05 over the complete
range of interaction strengths. This poses a serious challenge
to the numerical calculation of the energies. Nonetheless, we
see that the results of both CC and FCI lie nicely between the
two curves, thereby on one side showing their accuracy, and
on the other providing a further confirmation of the validity of
LDA for computing the energy of a trapped 1D gas.

The size of the computational space diverges exponentially
with the number of particles within exact diagonalization,
so that with this method we could obtain converged results
only for very small systems, containing at most three pairs of
atoms (N = 6), compatibly with what was recently published
in Ref. [35]. On the other hand, only a carefully chosen subset
of the total Hilbert space is retained in the CC calculations, so
that this method allows us to investigate much larger systems,
even up to 40 + 40 particles. The range of interaction strengths
we are able to explore, however, slowly shrinks with the size of
the system N , as the complexity of the calculation scales with
the bare interaction strength g, rather than with its rescaled
counterpart γ ∝ g/

√
N .

To investigate in detail the continuous crossover from few-
to many-body systems, in Fig. 2 we show our results after
subtracting the analytical two-body contribution E2. Even after
the subtraction, the energies are shown to converge remarkably
fast to the thermodynamic limit (red dotted line). While our CC
and FCI results closely match for 2 + 2 particles, at this level
of precision one notices that the FCI results for 3 + 3 particles
start to deviate from the expected behavior: As an example,
for γ � 2, the 3 + 3 FCI results (orange squares) unphysically
cross the 2 + 2 results (blue symbols), even after a very time-
consuming calculation [a week of CPU time to get one not-
yet-converged FCI point, compared to 2 hours for a converged
CCSD(T) point]. The insets of Fig. 2 show the rescaled CC
few-body energies plotted at fixed interaction strengths versus
1/N . For large N , the few-body results smoothly extrapolate

1

3
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15

21

− − −−

=- /2

N

FIG. 3. (Color online) BCS pairing gap 
N of a few-fermion
system with N particles. Solid circles indicate CC results for
increasing N , and the red squares are their extrapolation to N → ∞.
The red dotted line is the thermodynamic result, Eq. (5). Inset:
Chemical potential μN (in units of N�ω) vs 1/N , evaluated at
γ = −π/2.

to the GY+LDA thermodynamic limit (green dots), while for
small g (i.e., small γ and small N ) the results match the
first-order perturbation result

EN = E
(0)
N + g

∫ ∞

−∞
dz n2

0 + O(g2), (4)

where n0 = ∑N/2−1
i=0 |φi(z)|2 is the density of a gas of N/2

identical fermions. We note in passing that, in the limit of small
g and large N , the latter equation recovers the expected weak-
coupling LDA result, EN = E

(0)
N + 4gN3/2/(3π2az) + O(g2)

[22].
We turn now to consider the BCS pairing gap, which

for this few-body system we define as 
N = EN − (EN+1 +
EN−1)/2, for odd values of N (with N↑ = N↓ + 1). The results
of our CC calculations are shown in Fig. 3. The BCS pairing
gap equals half the spin gap, and in the thermodynamic
limit for a homogeneous system it is identically zero for
repulsive interactions, while it has a characteristic nonanalytic
behavior for small attractive interactions. The GY result for a
homogeneous gas [20] may be adapted to describe a trapped
system by replacing the homogeneous Fermi momentum πn/2
(n being the total density) with its value at the center of the
trap, kF ∼ √

N/az (for N � 1). The specific choice of the
momentum at the center of the trap can be justified by the fact
that, even if the extra particles are added at the edges of the
cloud, their presence will cause an overall reorganization of
the gas density profile, so that the resulting energy gap will be
sensitive to the typical momentum kF . This procedure yields


∞ = 8EF

√
− γ

2π3
exp

(
π2

γ

)
. (5)

Our few-body results are, as expected, analytic across the
noninteracting point. However, one can clearly see how the
progressive buildup of the Fermi sea gives rise to the expected
nonanalytic behavior in the weak interaction limit, as predicted
by Eq. (5). The inset of Fig. 3 shows instead the behavior of the
chemical potential μN = EN+1 − EN , which is characterized
by a pronounced even-odd effect due to the shell structure
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FIG. 4. (Color online) Density of a balanced two-component
Fermi gas. The solid lines in the left panel display FCI results for
3 + 3 particles, while the ones in the right panel show CC results for
15 + 15 atoms. The dashed lines are the GY+LDA results, and the
black dotted lines are analytic results for γ � −1 (LL), γ = 0 (0),
and γ � 1 (TG).

of the trap. At odds with the energy, the approach to the
thermodynamic behavior is actually very slow for both the
pairing gap and chemical potential.

Finally, of great interest is the density profile of the trapped
cloud. The density at a point z0 is obtained as the expectation
value of the operator

∑N
i=1 δ(zi − z0) within the FCI calcula-

tions, and in the CC approach from the Hellmann-Feynman
theorem by adding a perturbation of the form λφi(z0)φj (z0)
to the ij th element of the one-particle Hamiltonian matrix,
and taking the derivative of the energy with respect to λ.
The density profiles we obtain are shown in Fig. 4. These
become broader as the interaction strength grows increasingly
more repulsive, and display a regular series of peaks. One
finds exactly N/2 peaks in the LL limit of strong attraction
(γ � −1), where pairs of ↑↓ fermions become tightly bound
bosonic hard-core dimers, and the density approaches nLL =
2
∑N/2−1

i=0 |φ̃i |2, with φ̃i(z) the wave function of the ith level
for a particle of mass 2m. N/2 peaks are present also in
the noninteracting case, where two distinguishable fermions
occupy the same orbital, and the density becomes 2n0. The
number of peaks then smoothly evolves to N in the TG
limit (γ � 1) of “fermionized” fermions, where due to the
strong repulsion even distinguishable fermions must occupy
different one-particle levels, and the density approaches
nTG = ∑N−1

i=0 |φi |2. In the thermodynamic limit, the GY+LDA

analysis [18] predicts a density with the typical Thomas-Fermi
(TF) profile of an inverted parabola, nTF(z) ∝ (1 − z2/R2

TF),
where the radius RTF varies between

√
N/2az in the LL

limit and
√

2Naz in the TG limit, being exactly equal to√
Naz for an ideal gas. The two approaches used here prove

to be somehow complementary. The FCI method allows us
to consider very strong repulsive interactions and enter the
extreme “fermionized” regimes: the hard-core bosonic LL gas,
and the fermionized atomic TG gas. Such strong repulsion is
out of the reach of present CC calculations, since in this regime
both the Hartree-Fock and the correlation energies diverge.
However, with CC we are able to address much larger systems
and explore beyond mean-field corrections. In particular, this
method gives direct access to nonperturbative effects such
as the progressive buildup of a nonanalytic behavior for the
pairing gap.

Summarizing, we presented a detailed analysis of the
static properties of a two-component Fermi gas in a 1D
harmonic trap. We computed with high accuracy the energy,
the chemical potential, the pairing gap, and density profiles
for N ranging from a few to a few tens, and for a broad range
of interaction strengths, well beyond the mean-field regime.
Our predictions for EN , μN , and 
N may be tested directly
by rf spectroscopy or by tunneling measurements, as done
in Refs. [13,14]. The CC method proved to be extremely
well suited to studying harmonically trapped fermions, and
we foresee that it will equally well describe more complex
potentials, such as double wells or microtrap arrays [15], and
dipolar systems. The method could, moreover, be generalized
to 2D and 3D, or to few strongly interacting bosonic atoms.
These studies would, in particular, be crucial to understand
whether the rapid convergence of the system’s energy found
here is mainly due to the short-range character of the
interactions, to the 1D confinement, or to the harmonic external
potential.
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