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We propose a novel experimental method to extend the investigation of ion-atom collisions from the so
far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this
method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify
the proposed method with the lithium ion-atom system, for which we present simulations of how the initial
Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom
scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the
interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be
experimentally determined from the velocity of the scattered wave packet in the case of 6Liþ-6Li and
from the molecular ion fraction in the case of 7Liþ-7Li. The proposed method to utilize Rydberg molecules
for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable
to other ion-atom systems as well.
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The considerable achievements made in the field of
degenerate quantum gases over the past decades rely on the
exact understanding and control of interactions between
neutral atoms in the ultracold regime [1,2]. Considering the
interactions between ions and atoms, substantial work has
been done in the cold, but essentially classical regime,
deploying hybrid ion-atom traps. These hybrid traps
combine a Paul trap for the ion with an optical and/or a
magnetic trap for the atoms. Both elastic and inelastic
collisions have been studied in these traps for various ion-
atom combinations [3–5]. However, the ultracold, quantum
regime, i.e., the S-wave collision regime, could not be
reached with any of these systems (see Fig. 1). Cetina,
Grier, and Vuletić showed [17] that by the use of a Paul trap
there arises a micromotion-induced limit on the minimum
collision energy which can be reached. Only for a combi-
nation of a heavy ion with a light atom, e.g., the Caþ-Li or
the Ybþ-Li system, might the S-wave collision regime be
entered. For both of these ion-atom combinations, collision
measurements have recently been carried out in the milli-
kelvin energy range [8,10] which is, however, still in the
classical regime. Schaetz and co-workers [18] follow a
different path to enter the ultracold regime. To avoid the
spurious heating of the ion by the Paul trap, they optically
trap the ion, and they are currently working on the
simultaneous optical trapping of the ion and the atoms [19].
The generation and characterization of many different

types of Rydberg molecules has been an active area of
research in the past few years. These molecules consist of a

FIG. 1. In the past few years, the ion-atom interaction could be
studied down to the millikelvin regime for various ion-atom
combinations by the use of hybrid traps, with the ion held in a
Paul trap (inset). However, the ultracold, quantum scattering regime
could not be reached yet (see color-coded lines for the respective
S-wave scattering limitsE0).Wepropose an experimentalmethod to
enter the ultracold ion-atom scattering regime using Rydberg
molecules. We demonstrate this method with the lithium ion-atom
system which features an early onset of the S-wave scattering
regime due to its small reduced mass.
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Rydberg atom and at least one ground state atom which is
bound to the Rydberg ionic core at a very large internuclear
distance via its attractive interaction with the Rydberg
electron [20]. Triplet s-state Rydberg dimers, trimers,
tetramers, and pentamers have been observed [21–23],
and molecular lifetimes have been measured [24,25].
Furthermore, triplet d-state dimers have been studied
[26,27] as well as mixed singlet-triplet dimers [28,29].
Finally, trilobite [30–33] and butterfly [34] molecules have
been investigated.
State-of-the-art ab initio calculations could determine the

interaction potential of light few-electron systems to such a
precision that reliable predictions of the scattering length
could be made, e.g., for the scattering of two helium atoms,
either in their ground state [35] or in themetastable 2 3S1 state
[36]. Accurate estimations of the scattering length could also
begiven forweakly interactingmany-electron systemswith a
very small reduced mass, e.g., for metastable helium scatter-
ing off alkali-metal atoms [37,38]. Precisely predicting the
scattering length for heavier systems is very challenging,
though.
In this Letter, we propose a novel experimental method

to extend the investigation of ion-atom interactions from
the hitherto studied cold regime to the unexplored ultracold
regime. The key aspect of this method is the unprecedented
use of a Rydberg molecule as a tool to initialize an ultracold
ion-atom scattering event. This makes a separate trap for
the ion, be it a Paul trap or an optical trap, expendable. The
proposed method allows for the experimental determination
of the ion-atom scattering length and thus provides a very
valuable benchmark for its ab initio calculation.
The starting point of the proposed procedure is the

photoassociation of a single Rydberg molecule in an ultra-
cold, dilute atomic cloud. The Rydberg molecule is then
photoionized to start the ultracold ion-atom scattering event
between the Rydberg ionic core and the ground state atom;
i.e., the initial Rydberg molecule wave function, freed by
photoionization, evolves in the presence of the ion-atom
scattering potential. Depending on the scattering length,
either the entire scatteredwave packet is free and dispersively
expanding, or it splits into a free part and a bound part,
indicating the formation of a molecular ion. The detection of
the free ion and/or the molecular ion with a time- and
position-sensitive single-ion detector concludes the single
ultracold ion-atom scattering event. The frequent repetition
of this single scattering event eventually allows for the
determination of the ion-atom scattering length.
We exemplify the proposed method to enter the ultracold

ion-atom scattering regimewith the lithium ion-atom system.
It features an early onset of the S-wave scattering regime due
to its small reduced mass μ. Its S-wave scattering limit E0 ¼
ð2μ2C4Þ−1 [16] (C4 ¼ 164.2 a:u: [39]) is approximately 2
orders of magnitude larger than the respective limits for the
ion-atom systems so far studied in the millikelvin range,
except for the 40Caþ-6Li and the Ybþ-6Li system (see Fig. 1).

We present an ab initio calculation for the interaction
potential of the strongly interacting five-electron Liþ-Li
system, which is for the first time precise enough to yield
usable bounds for the ion-atom scattering length.
Rydberg molecules are key to the proposed method in

order to initialize the ultracold ion-atom scattering event.
The binding in these molecules is established by the
repeated elastic low-energy scattering between the quasi-
free Rydberg electron at position r and the neutral but
polarizable ground state atom at position R relative to the
ionic core. Fermi’s pseudopotential [40], extended to
include p-wave scattering [41], adequately describes this
low-energy scattering:

V̂T
eAðr−RÞ ¼ 2πaT0 δ

3ðr−RÞþ 6πaT1 δ
3ðr−RÞ∇

↼
·∇
⇀
; ð1Þ

where aTl ðkÞ ¼ − tan ½δTl ðkÞ�=k2lþ1 is the energy-dependent
triplet (T) s-wave (l ¼ 0) and p-wave (l ¼ 1) scattering
length, respectively, as a function of the respective phase
shifts δTl ðkÞ [42]. The wave number k of the Rydberg
electron (the wave number of the ultracold ground state
atom is negligible) at position R is given by the semi-
classical approximation kðRÞ2=2 ¼ 1=R − 1=½2ðn̰ ⋆Þ2�,
where n

̰ ⋆ is the effective principal quantum number of
the Rydberg level of interest [20]. The Rydberg molecule
Hamiltonian, combining all three binary interactions
between the Rydberg electron e, the Rydberg ionic
core I, and the ground state atom A, then reads

ĤAAðr;RÞ¼ ĤeIðrÞþ Ĥ≫
IAðRÞþ V̂T

eAðr−RÞP̂T; ð2Þ

where ĤeI includes the spin-orbit coupling [42] and
Ĥ≫

IAðRÞ ¼ P̂2=ð2μIAÞ − C4=ð2R4Þ describes the IA inter-
action at large internuclear distances, with P̂ and μIA being
the momentum and the reduced mass, respectively. P̂T ¼
ŝ · ŝ þ 3=4 is the triplet projection operator, with ŝ and ŝ the
electronic spin of the Rydberg and the ground state
electron, respectively. Applying the Born-Oppenheimer
approximation then yields the nuclear Schrödinger equa-
tion ½P̂2=ð2μIAÞ þ VAAðRÞ�ΨAAðRÞ ¼ EAAΨAAðRÞ with the
spherically symmetric Rydberg molecule potentials VAA,
the Rydberg molecule wave functions ΨAA, and the
corresponding binding energies EAA calculated numerically

[42]. The Rydberg molecule wave function of interest,Ψ
̰

AA,
is displayed in Fig. 2(a) for both lithium isotopes. It is
bound in the Lið30s1=2Þ-Lið2s1=2Þ 3Σ Rydberg molecule

potential V
̰
AA, and it is in its rovibrational ground state

(v
̰ ¼ J

̰
¼ 0) [70], thus being spherically symmetric.

For the chosen Rydberg electron principal quantum
number n

̰ ¼ 30, the first excited vibrational state (v ¼ 1)
is approximately 5 MHz above the ground state, and
the first excited rotational state (J ¼ 1) is approximately
2B

̰
≈ 300 kHz above the ground state [see Fig. 2(b)], where
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B ¼ ð2μIAr2clÞ−1 is the rotational constant of the Rydberg
molecule with the internuclear distance being approximated
by the classical turning point rcl ¼ 2ðn⋆Þ2 of the Rydberg
electron. Hence, 2B

̰
is approximately 60 times larger than

the typical Rydberg molecule decay linewidth γAA in a
dilute atomic cloud [24,25]. Besides, broadening mecha-
nisms associated with the photoassociation of the Rydberg
molecule (Doppler broadening, power broadening, laser
linewidth, and finite laser pulse duration) can be made
much smaller than 2B

̰
in an ultracold atomic cloud and

with suitable laser parameters. Thus, the rovibrational
ground state of the Rydberg molecule of interest can be
experimentally addressed. Working with a spin-polarized
atomic cloud and appropriate photoassociation laser
polarization(s) also justifies neglecting singlet scattering
between the Rydberg electron and the ground state atom
[42]. Furthermore, focusing down the photoassociation
laser(s) allows for the formation of a single Rydberg
molecule per atomic cloud by means of the Rydberg
blockade [71]. In combination with a dilute atomic cloud,
this ensures that after photoionization there is only a single
ion-atom scattering event happening at a time.
Photoionization frees the initial Rydberg molecule wave

function by removing the Rydberg electron. Choosing a
suitable photoionization scheme ensures, first, that the
energy imparted onto the ion-atom system in the photo-
ionization process is negligible in comparison with the
S-wave scattering limit and, second, that the ionization

process is fast compared to the effective trapping frequency
of the Rydberg molecule potential [42]. This makes the
photoionization diabatic; i.e., the shape of the initial
Rydberg molecule wave function is preserved during
ionization. The initial shape ΨIAðR; t ¼ 0Þ of the ion-atom
wave packet is thus set for the subsequent ultracold
scattering.
The scattering of the initial ion-atom wave packet is then

described by the time-dependent Schrödinger equation

i
∂
∂tΨIAðR; tÞ ¼ ĤIAðRÞΨIAðR; tÞ; ð3Þ

where ĤIA is the nuclear Hamiltonian of the molecular ion
[42], containing the spherically symmetric ground state

molecular ion potential V
̰
IAðRÞ. We carried out ab initio

calculations to determine V
̰
IA [42] which yielded a potential

depth De ¼ 10468 cm−1 with a conservatively estimated
error of �10 cm−1, thus in excellent agreement with the
measured value of ð10464� 6Þ cm−1 [72]. For our molecu-
lar ion potential with De ¼ 10468 cm−1, we calculate a
6Liþ-6Li ion-atom doublet S-wave scattering length ofA6 ¼
−1014 a:u:, with bounds ðA−

6 ;A
þ
6 Þ¼ð−778;−1294Þa:u:

corresponding to potentials scaled by (0.999; 1.001),
respectively, reflecting our accuracy of 0.1% in De. For
7Liþ-7Li we determine the scattering length A7 to be
7162 a.u., with bounds of (107825; 3664) a.u. Hence, the

(a)

(b)

(c)

FIG. 2. Using Rydberg molecules to initialize an ultracold ion-atom scattering event, exemplified with lithium. The Rydberg molecule
wave function of interest, more precisely, R2jΨ

̰

AAðRÞj2, is shown in (a) for both isotopes. It is bound in the homonuclear Lið30sÞ-Lið2sÞ
potential V

̰
AAðRÞ. It is in its spherically symmetric rovibrational ground state (v

̰ ¼ J
̰
¼ 0), which can be experimentally addressed,

evident from (b), as the rotational constant is larger than the Rydberg molecule decay linewidth γAA. Freed by photoionization, the initial

Rydberg molecule wave function evolves in the spherically symmetric ion-atom interaction potential V
̰
IAðRÞ, with R⋆ denoting its

characteristic radius. Because of angular momentum conservation, only S-wave scattering occurs (J
̰
¼ 0) despite the components above

E0 in the Rydberg molecule energy spectrum; see (c). The overlap betweenΨ
̰

AA and the last bound molecular ion wave functionΨ
̰

IA [see
(a)] determines the bound fraction in the scattered wave packet.
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scattering lengths differ considerably for the two lithium
isotopes, with the magnitude ofA6 being comparable to the
characteristic radius of ion-atom interaction R⋆

6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

μIAC4

p ¼ 949 a:u: [11], whereas A7 is approximately
7 times R⋆

7 ¼ 1025 a:u: This reflects also in the markedly
dissimilar bounds we predict for the two scattering lengths,
with tight bounds onA6, whileA7 is extremely sensitive to
changes of themolecular ion potential. Correspondingly, the

last bound molecular ion wave function 7Ψ
̰

IA has a large
extension and accordingly a small binding energy, whereas
6Ψ
̰

IA is deeply bound at comparatively small internuclear
distances, as can be seen in Fig. 2(a) (note the logarithmic
scale for the internuclear distance). The vibrational molecu-
lar ion wave functions Ψv

IAðRÞ and corresponding eigene-
nergies Ev

IA, with ĤIAðRÞΨv
IAðRÞ ¼ Ev

IAΨv
IAðRÞ, are then

used to express the scattered ion-atom wave packet in the
form

ΨIAðR; tÞ ¼
X

v

πv e−iE
v
IAtΨv

IAðRÞ; ð4Þ

where the sum runs over bound (Ev
IA < 0) and scattering

states (Ev
IA > 0) and πv ¼ hΨIAðR; t ¼ 0ÞjΨv

IAðRÞi is the
projection of the initial ion-atom wave packet on the vibra-
tional state Ψv

IA. With the ion-atom interaction potential

V
̰
IAðRÞ being spherically symmetric, andwithout an electric

field E present, the initial orbital angular momentum J of the
ion-atomwave packet, given by the Rydbergmoleculewave
function, is conserved during scattering; i.e., scattering
channels for different partial waves do not couple.
Consequently, the molecular ion wave functions used to
express the scattered wave packet in Eq. (4) have this very
orbital angular momentum J. For the case studied in this
Letter, where the initial Rydberg molecule wave function is
in its spherically symmetric rotational ground state (J

̰
¼ 0),

the orbital angular momentum conservation implies that
only S-wave ion-atom scattering can occur despite the fact

that Ψ
̰

AA has an energy spectrum with components above
the S-wave scattering limit, as is illustrated in Fig. 2(c).
The effect of electric stray fields Estray is discussed in
Supplemental Material [42].
We conducted ion-atom scattering calculations for both

lithium isotopes, with ΨIAðR; t ¼ 0Þ given by the respec-

tive Rydberg molecule wave function Ψ
̰

AA displayed in
Fig. 2(a), and for the respective ion-atom scattering length
tuned over a wide range [42]. These calculations revealed
two different scattering regimes depending on the scatter-
ing length A. For positive scattering lengths, exemplarily
illustrated in Fig. 3(a) for 6Liþ-6Li scattering with a
scattering length of þR⋆

6 , the scattered wave packet splits
into a free, dispersively expanding shell and a bound
shell, the position and shape of which reveal that the last
bound molecular ion state has been formed. Both shells
are spherically symmetric and thus demonstrate that only

S-wave scattering occurs. For negative scattering lengths, the
entire scattered wave packet is free as is exemplarily shown
in Fig. 3(b) for 6Liþ-6Li scattering with a scattering length of
−R⋆

6 . This is due to the negligible overlap between the initial
Rydberg molecule wave function and the last bound
molecular ion wave function, as can be seen in Fig. 2(a)

for the example of 6Ψ
̰

AA and
6Ψ
̰

IA withA6 ¼ −1.1R⋆
6 . In the

regime of negative scattering lengths, the velocity ζ with

(a)

(b)

(d)(c)

FIG. 3. Ultracold lithium ion-atom scattering processes, initial-
ized with Rydberg molecules, for different scattering lengths A.
For A > 0 [demonstrated in (a) for 6Liþ-6Li scattering with
A ¼ þR⋆

6 ], the scattered wave packet splits into a free, expanding
shell and a bound shell, indicating molecular ion formation. For
A < 0 [exemplified in (b) forA ¼ −R⋆

6 ], the entire scattered wave
packet is free. In (a) and (b), the time evolutionof the scatteredwave

packet R2jΨIAðR; tÞj2 is shown from t ¼ 0 [ΨIAðt ¼ 0Þ ¼ Ψ
̰

AA,
unfilled curve, vertical axis applies] to 1 μs in steps of 50 ns (top to
bottom, curves shifted by −3.25 × 10−6 a:u: each). The insets
demonstrate the S-wave character of the scattered wave packet [R
extension of 7 × 103 a:u:, same color scale in (a) and (b)]. For
A < 0 (A > 0), the shell expansion velocity ζ (the bound fraction
b) is a sensitive quantity to determine the scattering length; see (c)
and (d), where also the scattering lengths A6;7 from our ab initio
calculations are indicated (vertical lines with the shaded areas
marking the bounds).
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which the maximum of the expanding shell moves is a
sensitive quantity to determine the scattering length, as can
be seen from Fig. 3(c). With our predicted bounds onA6, the
6Liþ-6Li scattering falls into this regime. For positive
scattering lengths, the bound fraction b of the total scattered
ion-atomwave packet can be used to precisely determine the
scattering length, as is demonstrated in Fig. 3(d) for 7Liþ-7Li
scattering, falling in this regime according to our scattering
length calculations.
To experimentally measure the expansion velocity ζ, the

freely moving scattered ion of a single ultracold scattering
event is imaged onto a time- and position-sensitive single-
ion detector. After many repetitions of this single scattering
event, the scattered ion-atom wave packet can eventually be
reconstructed, either in momentum space when, e.g., using
a MOTRIMS [73] or VMI [74] apparatus or in real space when
employing an ion microscope for imaging. Given the
submicron resolution of these ion microscopes [75,76],
an evolution time in the microsecond range is sufficient to
resolve the shape of the scattered wave packet. The bound
fraction b can be measured in time of flight where the
molecular ions Liþ2 separate from the lighter free Liþ ions.
For guiding the ions onto the detector, a suitably small
extraction electric field has to be used not to dissociate the
weakly bound molecular ions.
The presented experimental method to use Rydberg

molecules for the investigation of ultracold ion-atom scatter-
ing, particularized for the lithium ion-atom system in this
Letter, is readilyapplicable toother ion-atomsystems, e.g., to
homo- or heteronuclear alkali or alkaline earth ion-atom
systems for which Rydberg molecules can be formed
[50,77,78]. In such a manner, the ab initio calculations of
ion-atom scattering lengths could be benchmarked for
increasingly complicated systems. Furthermore, having
the ion-atom scattering lengths precisely determined with
theproposedtwo-bodyscatteringexperimentwouldimmedi-
ately allow for amore faithful and accurate description of the
many-body, polaronic properties of an ion impurity
immersed in an atomic quantum gas [79–83]. Finally, keep-
ing the Rydberg electron as a spectator and Faraday cage for
the ion-atom collision [84–88] might be possible also in the
ultracold regime using circular Rydberg states [89].
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SUPPLEMENTAL MATERIAL for: “Rydberg
Molecules for Ion-Atom Scattering in the Ultracold

Regime”

Rydberg molecule calculations

In the following, the calculation of Rydberg molecule
wave functions and binding energies is thoroughly dis-
cussed. First, two of the three binary interactions of
the three-body Rydberg molecule Hamiltonian (see Eq. 2
and Fig. S1) are detailed, namely the Rydberg-electron –
Rydberg-ionic-core interaction and the Rydberg-electron
– ground-state-atom interaction. Afterwards, the solu-
tion of the complete Rydberg molecule Hamiltonian by
applying the Born-Oppenheimer approximation, i.e., by
treating the electronic and nuclear degrees of freedom
sequentially, is particularized.

I A

e

R

r

r −
R

FIG. S1. Schematic illustration of the Rydberg molecule AA,
constituting a three-body system where the Rydberg elec-
tron e binds the neutral, polarizable ground state atom A
to the Rydberg ionic core I .

Rydberg-electron – Rydberg-ionic-core interaction

The Schrödinger equation for the Rydberg-electron –
Rydberg-ionic-core interaction reads

[
p̂2

2µeI
+ V̂eI (r)

]
ψnljmj (r) = Enljψnljmj (r), (S1)

where p̂ is the Rydberg electron momentum, µeI is the re-
duced electron – ionic-core mass, which is approximated
with the bare electron mass me in the following, V̂eI (r)
is the spherically symmetric interaction potential, ψnljmj

are the Rydberg electron wave functions, and Enlj are the
corresponding eigenenergies.

For l ≤ 2, the eigenenergies Enlj are calculated via

Enlj = − R
?

(n?)2 , (S2)

where n? is the effective principal quantum number given
by

n? = n− δnlj , (S3)

with the quantum defect

δnlj = δ0 + δ2
(n− δ0)2 + δ4

(n− δ0)4 + δ6
(n− δ0)6 + . . . (S4)

(see Table SI for the used values for lithium), and where
R? is the reduced Rydberg constant (given in Table SII
for lithium). For l ≥ 3, the eigenenergies are calculated
with [S5]

Enlj = −R?
[

1
n2 + α2

fs
n3

(
1

j + 1/2 −
3

4n

)]
− 3αc

4n3l5
,

(S5)
where αfs is the fine structure constant, and αc is the
ionic core polarizability (see Table SII for the lithium
value).
For V̂eI (r), the following model potential is used [S4]:

V̂eI (r) = VC(r) + Vp(r) + V̂so(r), (S6)

with the Coulomb term

VC(r) = −Zl(r)
r

, (S7)

Zl being the radial charge distribution

Zl(r) = 1 + (Z − 1)e−α1r − r(α3 + α4r)e−α2r, (S8)

with the nuclear charge Z and α1,2,3,4 model parameters
(see Ref. [S4] for lithium values); Vp is the core polariza-
tion term

Vp(r) = − αc
2r4

[
1− e−(r/rc)6

]
, (S9)

with rc the effective core size (see Ref. [S4]); V̂so is the
spin-orbit coupling term for which the approximation

V̂so(r > rc) = α2
fs

2r3 l̂ · ŝ (S10)

is used, valid in the region r > rc. For calculating Ryd-
berg wave functions, this approximation is justified.
To solve the Schrödinger equation S1 for the Rydberg

electron wave functions, the separation ansatz

ψnljmj (r) = Rnlj(r)Y(l)jmj
(ϑ, ϕ) (S11)

is made, where Y(l)jmj
are the spin spherical harmonics

for s = 1/2, thus l = j±1/2, given in matrix form by [S6]

Y(j± 1
2 )jmj

= 1√
2(j ± 1

2 ) + 1

×


∓

√
j ± 1

2 ∓mj + 1
2Y

mj− 1
2

j± 1
2√

j ± 1
2 ±mj + 1

2Y
mj+ 1

2
j± 1

2


 , (S12)

with Y ml

l being the spherical harmonics. The spin-orbit
term acting on this ansatz yields

V̂soψnljmj
= α2

fs
4r3

[
j(j + 1)− l(l + 1)− 3

4

]
ψnljmj

= Y(l)jmj
VsoRnlj , (S13)
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TABLE SI. Lithium quantum defects used in this Letter.
Isotope State δ0 δ2 δ4 δ6 Ref.
6, 7 s1/2 0.399 510 1 0.0290 [S1]
6 p1/2 0.047 183 5 −0.024 [S1]
6 p3/2 0.047 172 0 −0.024 [S1]
7 p1/2 0.047 178 0 −0.024 [S1]
7 p3/2 0.047 166 5 −0.024 [S1]
6, 7 d3/2, d5/2 0.002 129 −0.014 91 0.1759 −0.8507 [S2]

TABLE SII. Lithium reduced Rydberg constants R? and
lithium ionic core polarizability αc used in this Letter.

Quantity Isotope Value Ref.
R? (THz) 6 3289.541 926 [S1]
R? (THz) 7 3289.584 728 32 [S3]
αc (a.u.) 6, 7 0.1923 [S4]

where

Vso(r) = α2
fs

4r3 [j(j + 1)− l(l + 1)− s(s+ 1)] (S14)

was introduced with s = 1/2. The radial part Rnlj of the
electron wave functions is then found solving
[
− 1

2r
d2

dr2 r + l(l + 1)
2r2 + VeI (r)

]
Rnlj(r) = EnljRnlj(r)

(S15)
with a square root rescaling of r [S7] and by using Nu-
merov’s method for numerical integration.

Rydberg-electron – ground-state-atom interaction

As outlined in the main article, the Rydberg-electron –
ground-state-atom interaction potential is given by Eq. 1,
where the energy-dependent triplet s- and p-wave phase
shifts δTl (k) are used to calculate the respective scatter-
ing lengths aTl (k). For the lithium system used in this
Letter to exemplify the proposed method for ultracold
ion-atom scattering, we conducted R-matrix calculations
to determine the electron-lithium scattering phase shifts.
These phase shifts are displayed in Fig. S2, and char-
acteristic quantities extracted from them are given in
Table SIII. Our phase shifts feature a better accuracy
than previously published values (see Table SIII), espe-
cially at very low scattering energies, which is necessary
to faithfully represent the low-energy scattering between
the Rydberg electron and the ground state atom.

For internuclear distances larger than the classical
turning point of the Rydberg electron, the semiclassical
approximation

k2

2 = 1
R
− 1

2 (n?)2 (S16)

for the scattering energy E = k2/2 ceases to be ap-
plicable. Additionally, for the polarization potential,
the p-wave scattering lengths diverge in the zero-energy
limit [S10]. Therefore, a cutoff energy is defined below
which, in Eq. 1, the zero-energy s-wave scattering lengths
are used and the p-wave scattering lengths are set to
zero. This cutoff energy is defined such that the Ryd-
berg molecule potential of interest ṼAA is smooth at the
classical turning point. It is approximately 0.276 meV for
the ṼAA shown in Fig. 2(a).
In this Letter, singlet scattering between the Rydberg

electron and the ground state atom is neglected as well as
the hyperfine interaction in the ground state atom. This
yields a prototypical Rydberg molecule as for example
in Ref. [S11] which is, for its simplicity, well suited to
demonstrate the proposed method for ultracold ion-atom
scattering. Conducting the experiment with stretched
states of the Rydberg and the ground state electron (e.g.,
ms = ms = +1/2), and that the depth of the Rydberg
molecule potential of interest in the range given by the
extension of Ψ̃AA is much smaller than the hyperfine split-
ting in the lithium ground state atom {approximately
228 MHz for 6Li and 804 MHz for 7Li [S12] in compari-
son with about 30 MHz; see Fig. 2(a)} guarantees that
these two omissions are justified.

E?

0 50 100 150 200 250 300
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e
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1
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FIG. S2. Non-isotope-specific electron-lithium scattering
phase shifts δS,T

l as a function of energy E for singlet (S)
and triplet (T ), s-wave (l = 0) and p-wave (l = 1) scattering.
The triplet p-wave shape resonance position E? and width Γ?

(shaded area) are also indicated (the values are given in Ta-
ble SIII). The presented phase shifts feature a high accuracy
at low scattering energies.
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TABLE SIII. Electron-lithium scattering: characteristic
quantities and accuracy considerations. Given are the zero-
energy singlet (S) and triplet (T ) s-wave (l = 0) scattering
lengths āS,T

0 and the triplet p-wave shape resonance position
E? and width Γ?. Our values (PW: present work) are in
good agreement with previously published ones, except for
Γ? where the deviation might be attributed to convergence
issues in the calculations of Ref. [S8]. Comparing the mini-
mum scattering energies Emin down to which the respective
phase shift calculations were conducted and the results tab-
ulated (with the energy resolution being on the same order
as Emin) indicates the improved accuracy of our calculations,
especially at low scattering energies. This, in turn, renders
our zero-energy scattering lengths particularly sound.

āT
0 (a.u.) āS

0 (a.u.) E? (meV) Γ? (meV) Emin (meV) Ref.
−7.43 2.99 60.9 67.9 0.023 PW
−7.12 3.04 0.136 [S9]

60 57 34 [S8]

Solving the electronic Schrödinger equation

Treating the nuclear coordinates as parameters, the
electronic Schrödinger equation of the Rydberg molecule
reads

ĤAA(r;R)ψAA(r;R) = VAA(R)ψAA(r;R), (S17)

where

ĤAA(r;R) = ĤeI (r)+V �
IA (R)+ V̂ TeA(r−Rez)P̂T (S18)

is the electronic Hamiltonian with ĤeI (r) given in Eq. S1,
with V �

IA (R) = −C4/(2R4) as the ion-atom interaction
potential valid at large internuclear distances, and with
V̂ TeA(r −Rez) given by Eq. 1, where R was chosen to lie
along the z axis, R = Rez, without loss of generality. To
solve for the electronic Rydberg molecule orbitals (MO)
ψAA(r;R) and the corresponding spherically symmetric
Rydberg molecule potentials VAA(R), the Schrödinger
equation S17 is numerically diagonalized for each R in the
basis {|n, l, j,mj ; ms〉} of Rydberg electron wave func-
tions ψnljmj (r) (see Eq. S11) multiplied with the spin
state |ms〉 of the ground state atom’s valence electron
(ms = ±1/2 for lithium). The infinite number of ba-
sis states of different n is reduced to comprise four total
manifolds, two below and one above the manifold con-
taining the Rydberg level of interest; i.e., for lithium with
zero integer parts of the quantum defects (see Table SI)
n = ñ− 2, ñ− 1, ñ, ñ+ 1, with ñ indicating the principal
quantum number of the Rydberg level of interest. This
was shown to yield accurate Rydberg molecule poten-
tials [S13, S14]. The orbital angular quantum number l
is not truncated, thus l = 0, . . . , n−1. With merely s- and
p-wave scattering included (see Eq. 1), only basis states
with |mj | ≤ 3/2 contribute since the spherical harmonics
vanish on the z axis except for ml = 0. Obtaining the

same number of electronic Rydberg MO’s ψAA and cor-
responding potentials VAA as the number of basis states
included in the diagonalization, a counting index N is
introduced for unambiguous identification, with Ñ = 0
for the MO and potential of interest, i.e., ψ̃AA = ψ0 and
ṼAA = V0. Alternatively, the MO and potential of inter-
est are labeled with the term symbol 30s1/2σ 2s1/2σ

3Σ0.

Solving the nuclear Schrödinger equation

The Rydberg molecule potentials obtained by solving
the electronic Schrödinger equation S17 enter the nu-
clear Schrödinger equation of the Rydberg molecule in
the form

[
P̂ 2

2µIA
+ VN (R)

]
ΨNvJ(R) = ENvJΨNvJ(R), (S19)

where ΨNvJ(R) is the nuclear Rydberg MO, also denoted
Rydberg molecule wave function, bound in theN ’th Ryd-
berg molecule potential, with v and J indicating the vi-
brational and rotational state, respectively; ENvJ is the
corresponding Rydberg molecule binding energy. Making
the separation ansatz

ΨNvJ(R) = RNvJ(R)PJ(θ) (S20)

with the normalized Legendre polynomials

PJ(θ) =
√

2J + 1
4π PJ(θ) (S21)

for the angular part then yields the one-dimensional ra-
dial Schrödinger equation

[
− 1

2µIA

1
R

d2

dR2R+ J (J + 1)
2µIAR2 + VN (R)

]
RNvJ(R)

= ENvJRNvJ(R), (S22)

which is solved for the radial part RNvJ(R) and binding
energy ENvJ by applying a square root rescaling of R [S7]
and subsequent numerical integration using Numerov’s
method.

Photoionization

We propose a V -type photoionization scheme to free
the initial Rydberg molecule wave function in order to
start the ultracold ion-atom scattering. Applying this
scheme as displayed in Fig. S3 to the lithium Rydberg
molecule wave function of interest Ψ̃AA, with the two
ionization laser beams copropagating and with the as-
cending laser tuned maximally 1 GHz above the ioniza-
tion threshold, the energy imparted onto the ion-atom
system is more than 10 times smaller than the respective
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FIG. S3. V -type photoionization scheme to remove the
Rydberg electron of the initial Rydberg molecule in order to
start the ultracold ion-atom scattering. Here, this scheme
is illustrated for lithium, with the Rydberg electron initially
in the 30s1/2 state and subsequently brought into the con-
tinuum with two lasers via the 3p3/2 state (the dash-dotted
line indicates the ionization threshold). The energy E30s1/2
is calculated with Eq. S2, E3p3/2 is determined from refer-
ences [S3, S15], and the total decay rate of the 3p3/2 state
(both into the 3s1/2 and the 2s1/2 state) is taken from
Ref. [S16].

S-wave scattering limit of the two lithium isotopes. The
photoionization process is diabatic as long as its timescale
is considerably faster than the trapping frequencies of
the Rydberg molecule potential in which Ψ̃AA is bound.
For the photoionization process depicted in Fig. S3, with
an ionization cross section taken from Ref. [S17] and for
typical ionization laser parameters (i.e., for typical laser
powers and beam waists), we calculate a photoioniza-
tion timescale of a few nanoseconds, corresponding to a
frequency of a few tens of megahertz. It is thus signifi-
cantly larger than the effective radial trapping frequency
one can attribute to the Rydberg molecule potential of
interest ṼAA by averaging the zero-point energy over the
main extension range of Ψ̃AA [see Fig. 2(a)]. In contrast
to the radial direction, there is no angular confinement
present for Ψ̃AA. Consequently, the photoionization pro-
cess of the lithium initial Rydberg molecule wave function
is diabatic.

Molecular ion calculations

In the following, our ab initio calculations of the
lithium ground state molecular ion potential ṼIA, also de-
noted as ion-atom interaction potential, are detailed. We
treat the lithium molecular ion as a seven-body system
where the altogether five electrons bind the two triply-
charged bare ionic cores together (see Fig. S4). As op-
posed to the three-body Rydberg molecule system (see
Fig. S1), where the Rydberg electron is singled out and

I I
R

I A

e1

e2

e1

e2

e3

FIG. S4. Schematic illustration of the lithium molecular
ion IA studied in this Letter, constituting a seven-body sys-
tem where in total five electrons (two electrons ei from the
Rydberg ionic core I and three electrons ej from the ground
state atom A) bind the two triply-charged bare ionic cores I
and I together.

the remaining electrons enter the Rydberg molecule cal-
culations only implicitly, for our molecular ion calcula-
tions, all electrons are treated on equal footing.

We apply the Born-Oppenheimer approximation to our
five-electron – two-nuclei lithium molecular ion system
in order to separate the electronic from the nuclear de-
grees of freedom. This yields the electronic Schrödinger
equation, the solution of which in turn yields the spher-
ically symmetric molecular ion potentials VIA(R). For
our ion-atom scattering calculations, only the ground
state molecular ion potential ṼIA(R) is of interest (see
Eq. S23). To solve the electronic Schrödinger equation
for ṼIA, we use coupled cluster methods with Gaus-
sian basis sets. In the first step, we use the spin-
restricted open-shell coupled cluster method restricted
to single, double, and non-iterative triple excitations,
starting from the restricted open-shell Hartree-Fock or-
bitals, RCCSD(T) [S18], and the augmented correlation-
consistent polarized core-valence quintuple-ζ quality ba-
sis set (aug-cc-pCV5Z) [S19]. The interaction energy is
obtained with the supermolecule method and the basis
set superposition error is corrected by using the counter-
poise correction [S20]. Next, the remaining contribution
of the full triple excitations in the coupled cluster method
(RCCSDT) is calculated with a smaller basis set (aug-cc-
pCVTZ) and added to the full interaction potential. The
importance of the scalar relativistic effects is assessed by
performing coupled cluster calculations with the third-
order Douglas-Kroll-Hess Hamiltonian [S21]. The uncer-
tainty of the obtained molecular ion potential is eval-
uated by a systematic convergence analysis of the re-
sults obtained with different basis sets and methods. The
electronic structure calculations are performed with the
molpro package of ab initio programs [S22].

The resulting Li+ - Li(2s1/2) X 2Σ ground state molec-
ular ion potential ṼIA is displayed in Fig. 2(a). For inter-
nuclear distances R being much larger than the equilib-
rium distance Re of the molecular ion potential, ṼIA tran-
sitions into the polarization potential Ṽ �

IA = −C4/(2R4).
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Ion-atom scattering calculations

The scattering of the initial ion-atom wave packet
ΨIA(R, t = 0) is described by the time-dependent Schrö-
dinger equation 3 in which the nuclear Hamiltonian of
the molecular ion is given by

ĤIA(R) = P̂ 2

2µIA
+ ṼIA(R), (S23)

where P̂ is the momentum and µIA the reduced mass of
the molecular ion system I A (see Fig. S4), and ṼIA(R) is
the ground state molecular ion potential.

For the spatial and temporal propagation of the initial
ion-atom wave packet, the radial part of the scattering
Hamiltonian ĤIA is represented on a Fourier grid with
an adaptive step size [S23] and the angular part is ex-
panded in terms of Legendre polynomials [S24]. With-
out an electric field, the scattering Hamiltonian is diago-
nalized and its eigenstates and eigenenergies are used in
propagation as given by Eq. 4. In an electric field, we
propagate the wave packet using the Chebyshev propa-
gator [S25, S26]. To enable propagation times over mi-
croseconds and internuclear distances over 105 a.u., we
use a reduced ion-atom interaction potential which sup-
ports only several bound vibrational states and has the
same long-range part and scattering length as the orig-
inal potential. We have found that reduced potentials
supporting four or more vibrational states give the same
scattering results. The reduced interaction potential is
obtained by adding a repulsive C12/R

12 barrier to the
original potential. By adjusting C12, we set the number
of vibrational states and we control the scattering length.
We employ up to 11 partial waves and as many as 8192
radial grid points with a maximum internuclear distance
of up to 5× 105 a.u. The scattering calculations are per-
formed with the developer version of the qdyn program
package [S27].

Without an electric field present, only S-wave scatter-
ing occurs and hence the scattered ion-atom wave packet
is spherically symmetric [see inset in Fig. 3(a) and 3(b),
respectively]. Electric stray fields Estray during the scat-
tering process admix higher partial waves to the scat-
tered wave packet and thus break its spherical symme-
try. We performed scattering calculations showing that
for any Estray ≤ 0.1 mV/cm the introduced asymmetry in
the scattered wave packet is small enough to still yield
the same expansion velocity ζ and bound fraction b, and
hence the same scattering length A, as in the electric-
field-free case [see Fig. 3(c) and 3(d), respectively]. An
Estray ≤ 0.1 mV/cm is experimentally achievable with
suitable compensation schemes [S28, S29].
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