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Hybrid systems of laser-cooled trapped ions and ultracold atoms combined in a single experimental
setup have recently emerged as a new platform for fundamental research in quantum physics. This
paper reviews the theoretical and experimental progress in research on cold hybrid ion-atom systems
which aim to combine the best features of the two well-established fields. A broad overview is
provided of the theoretical description of ion-atom mixtures and their applications, and a report is
given on advances in experiments with ions trapped in Paul or dipole traps overlapped with a cloud of
cold atoms, and with ions directly produced in a Bose-Einstein condensate. This review begins with
microscopic models describing the electronic structure, interactions, and collisional physics of ion-
atom systems at low and ultralow temperatures, including radiative and nonradiative charge-transfer
processes and their control with magnetically tunable Feshbach resonances. Then the relevant
experimental techniques and the intrinsic properties of hybrid systems are described. In particular, the
impact is discussed of the micromotion of ions in Paul traps on ion-atom hybrid systems. Next, a
review of recent proposals is given for using ions immersed in ultracold gases for studying cold
collisions, chemistry, many-body physics, quantum simulation, and quantum computation and their
experimental realizations. The last part focuses on the formation of molecular ions via spontaneous
radiative association, photoassociation, magnetoassociation, and sympathetic cooling. Applications
and prospects are discussed of cold molecular ions for cold controlled chemistry and precision
spectroscopy.
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I. INTRODUCTION

Cold and ultracold controllable atomic systems attract great
interest because the quantum nature of the world is visibly
manifested at ultralow temperatures, and research on such
systems gives new insight into the quantum theory of matter
and matter-light interactions. Such an understanding is crucial
for the progress of many areas of physics as well as future
quantum technologies.
Ion trapping techniques were developed in the 1950s by

Hans Dehmelt and Wolfgang Paul, who shared the 1989
Nobel Prize in physics for their work. The two most
commonly employed types of ion traps are radio-frequency
quadrupole traps, or Paul traps (Paul, 1990), and Penning traps

(Penning, 1936; Dehmelt, 1968) (invented by Dehmelt, but
named after Frans Penning), which rely on static electric and
magnetic fields. Penning traps are generally not used in
combination with cold buffer-gas cooling (Itano et al.,
1995), since the orbital motion of the trapped ions would
not be stable under collisions. Instead, buffer-gas cooling has
been used extensively in Paul traps (Itano et al., 1995),
although quantum gases have been employed only recently.
The advent of laser cooling has made it possible to

manipulate the internal and external degrees of freedom of
trapped ions with unprecedented precision (Leibfried et al.,
2003). Resolved sideband cooling and optical pumping allow
the preparation of pure quantum states of motion and electron
configuration. Manipulation with electromagnetic waves
makes it possible to prepare arbitrary quantum states, while
the Coulomb interaction between the ions also allows for the
generation of entanglement. The internal state of the ions can
be read out projectively by fluorescence detection, while laser
coupling between the internal states and the motion, followed
by internal state detection, allows for full characterization of
the ionic motional state as well. The development of these
ground-breaking experimental methods, which enable meas-
uring and manipulation of individual quantum systems, was
awarded the Nobel Prize in Physics in 2012 to David
Wineland (Wineland, 2013) (shared with Serge Haroche).
Trapped ions provide highly controllable quantum systems

with long-range interactions. Coulomb crystals of up to tens of
ions with full control over their motional and internal degrees
of freedom are now available with the potential to produce
larger systems in the future. The exquisite control and
precision offered by ion traps make them of key importance
to many fields of physics. Prime examples include metrology
and atomic clocks (Ludlow et al., 2015), quantum information
processing (Haeffner, Roos, and Blatt, 2008; Wineland, 2009;
Singer et al., 2010; Monroe and Kim, 2013), the study of few-
and many-body quantum physics (Leibfried et al., 2003; Blatt
and Roos, 2012; Schneider, Porras, and Schaetz, 2012; Zhang
et al., 2017), cold chemistry (Willitsch, 2012) and precision
spectroscopy, and tests of fundamental physics (Safronova
et al., 2018).
The development of methods to cool and trap neutral atoms

with laser light has resulted in recent decades in the birth and
successful advances of the field of cold and ultracold matter
(Weiner et al., 1999) and was awarded the Nobel prize in
Physics in 1997 to Steven Chu, Claude Cohen-Tannoudji, and
William D. Phillips (Chu, 1998; Cohen-Tannoudji, 1998;
Phillips, 1998). These discoveries were followed by the first
observation of Bose-Einstein condensation in dilute atomic
gases in 1995 by Eric A. Cornell, Wolfgang Ketterle, and Carl
E. Wieman (Cornell and Wieman, 2002; Ketterle, 2002).
Nowadays, ultracold Bose and Fermi gases find applica-

tions in many areas of physics. In analogy to trapped
ions, ultracold atoms are also a highly controllable and
scalable quantum system, but with typically short-range
van der Waals interactions (Bloch, Dalibard, and Zwerger,
2008). Notwithstanding, the interactions among ultracold
atoms, described in terms of scattering lengths, can be
controlled via magnetically tunable Feshbach resonances
(Chin et al., 2010), field-induced dipole-dipole interactions,
e.g., by means of Rydberg excitations (Saffman, Walker, and
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Mølmer, 2010), or by shaping the external trap, which can
lead to confinement-induced resonances (Olshanii, 1998;
Petrov, Holzmann, and Shlyapnikov, 2000). Furthermore,
optical lattices, consisting of thousands of optical microtraps
created by interfering laser beams (Lewenstein et al., 2007),
provide the opportunity to create a perfect periodic potential
for the atoms with variable dimensionality and geometry.
Experiments on trapped ultracold atoms connect quantum
optics and atomic physics with condensed-matter and solid-
state physics (Lewenstein et al., 2007). Prominent examples of
applications of ultracold atoms are the study of many-body
quantum physics (Bloch, Dalibard, and Zwerger, 2008),
quantum simulation (Bloch, Dalibard, and Nascimbene,
2012; Bernien et al., 2017), quantum information processing
(Monroe, 2002), and metrology (Udem, Holzwarth, and
Hänsch, 2002; Ludlow et al., 2015). Further research oppor-
tunities in the quantum domain bridging the atomic and
condensed-matter physics have been opened with the reali-
zation of more complex systems such as ultracold molecules
(Carr et al., 2009; Quemener and Julienne, 2012; Bohn, Rey,
and Ye, 2017) as well as setups containing multiple species.
Cold hybrid ion-atom systems have emerged at the inter-

section of the well-established fields previously described:
trapped ions and ultracold atoms, combining the two in a
single experimental setup; see Fig. 1. These experiments aim
to inherit the most important advantages of both subsystems,
while complementing each other, and to show new emerging
features providing a platform for both fundamental research in
quantum physics and upcoming quantum technologies. The
expected features of the hybrid system are the high control-
lability with spatial localization and addressability of ionic
systems, the long coherence time, and extraordinary scal-
ability of the atomic systems, along with intermediate-range
and tunable ion-atom interactions as the link between the two.
In addition to these, the complementary features of the two
systems, like the long-ranged phonon-mediated interactions of

trapped ions that are absent in neutral ultracold matter, render
the combined system unique and appealing. To fully benefit
from such advantages, however, it is essential to understand
the fundamental collisional properties of ions and atoms first,
since they determine the prospects for coherence and control,
but also for decoherence and losses.

A. Scope and content of the review

The purpose of this review is twofold: First, it aims to
provide a broad overview of the relatively new field of cold
ion-atom systems, thus providing a complete picture of the
latest advances and underlying techniques from both an
experimental and a theoretical viewpoint. Second, it aims
to convey, especially to the newcomers in the field, the most
relevant challenges to be addressed in the near future in
order to reach the quantum regime as well as new research
directions and applications that can arise if these are overcome
in the laboratory.
To this end, the review is divided into five main sections

with a final summary of the major issues addressed together
with an outlook on future research developments. We begin
with a theoretical overview of ultracold ion-atom physics,
starting from the basics of two-body interactions and colli-
sions, describing the scattering processes, and then discussing
the many-body problem of an ion impurity immersed in a
quantum bath (Sec. II). Subsequently, we present the oppor-
tunities for tuning the collisional properties of ion-atom
systems via external magnetic fields as well as using the
trapping potential (Sec. III). We then move to the experimental
implementations of hybrid systems, especially those based on
the combination of radio-frequency and optical traps which
are the most common in the laboratories, their specific
features, and implications for the system dynamics. We also
discuss other approaches such as optical trapping of ions,
Rydberg excitations, and photoionization (Sec. IV). The next
section describes the experimental studies of the collisional
properties and theoretical proposals for applications of ion-
atom systems for quantum simulation, computation, and
detection of many-body correlations (Sec. V). The last section
focuses on cold molecular ions and their applications in cold
chemistry and spectroscopy (Sec. VI).
Let us note that the history of research on cold hybrid ion-

atom systems is less than two decades long. Nonetheless,
research on ion-neutral interactions and collisions at higher
temperatures (Garcia, Fortner, and Kavanagh, 1973) and in
astronomical conditions (Smith, 1992) has much longer
tradition. Similarly, related research on collisions of neutral
atom and molecules with electrons (Inokuti, 1971) started
many decades ago. Such systems, however, albeit very
interesting, are out of the scope of the present review and
will not be discussed. Finally, we note that some reviews on
ion-atom systems are already available (Härter and Hecker
Denschlag, 2014; Willitsch, 2015; Côté, 2016; Zhang and
Willitsch, 2017).

II. THEORETICAL BACKGROUND

In this section, we present the theory of ion-atom inter-
actions and collisions at cold and ultracold temperatures.

FIG. 1. Schematic representation of an example hybrid ion-
atom experiment: a linear radio-frequency Paul trap is used to
store ions, whereas the ultracold atoms are confined in a crossed
optical dipole trap. By precisely overlapping the positions of
these two traps, a single ion can be immersed into the center of
the ultracold neutral atom cloud. From Schmid, Härter, and
Hecker Denschlag, 2010.

Michał Tomza et al.: Cold hybrid ion-atom systems

Rev. Mod. Phys., Vol. 91, No. 3, July–September 2019 035001-3



We discuss the electronic structure, quantum chemistry
approach to interaction energy calculations, and coupled-
channel scattering calculations. We characterize ultracold
ion-atom scattering, which includes reactive charge-transfer
processes. We also present the quantum defect theory
approach to ion-atom collisions. In the last part we consider
the many-body problem of an ion immersed in a quantum gas.

A. Ion-neutral interactions

The interaction between ionic and neutral particles is
dominated by the induction component, which can be under-
stood in terms of the interaction of the charge of an ion with
the electronic cloud of a neutral partner (Israelachvili, 2011;
Stone, 2013). Usually, induction-dominated interactions are
much stronger than interactions of the van der Waals type. The
leading long-range part of the ion-neutral interaction potential
for structureless particles scales with the interparticle distance
R as −1=R4, to be compared with −1=R6 and −1=R3 for van
der Waals and dipole-dipole interactions, respectively (Hapka
and Żuchowski, 2017).
The interaction energy within the Born-Oppenheimer

approximation is formally defined by

VAþþB ¼ EAþþB − EAþ − EB; ð1Þ

where EAþþB is the total energy of an interacting complex, and
EAþ and EB are the total energies of separated monomers. The
interaction energy can be calculated using Eq. (1) with total
energies obtained by solving the many-body Schrödinger equa-
tion for specific electronic Hamiltonians with methods of
quantum chemistry (Helgaker, Jorgensen, and Olsen, 2000;
Helgaker et al., 2012). Another possibility is to employ pertur-
bation theory (Jeziorski, Moszynski, and Szalewicz, 1994).
For two-atom systems, the interaction potential is a

one-dimensional curve (or a set of curves if many spin
configurations are possible), whereas for larger systems the
interaction potential is a multidimensional surface (or a set of
surfaces). Two regions of potential energy curves and surfaces
can be distinguished: at small internuclear distances (short
range) the atomic wave functions overlap significantly and the
strong interactions are nonuniversally described by quantum
chemistry and refereed as “chemical forces,” whereas at large
internuclear distances (long range) the atomic wave functions
do not overlap and the interactions are universally described
by a multipole expansion of the electrostatic interaction within
perturbation theory. The long-range interaction coefficients of
the multipole expansion can be expressed using the electronic
properties of the monomers. The long-range part of the
interaction potential is especially important for cold and
ultracold physics and chemistry because quantum reflection
and tunneling take place at relatively large internuclear
distances in the quantum regime. The knowledge of potential
energy curves and surfaces is crucial for scattering studies.

1. Atomic ion and atom

We start with the simplest charge-neutral system, consisting
of an atomic ion and an atom. Exemplary potential energy
curves and transition electric dipole moments for the

ðLiþYbÞþ ion-atom system are presented in Figs. 2 and 3,
respectively (Tomza, Koch, and Moszynski, 2015). In order to
obtain the presented energy spectrum, quantum chemical
techniques such as coupled-cluster and configuration-
interaction methods were used to account for correlation
energy on top of mean-field Hartree-Fock calculations with
Gaussian-type orbital basis sets (Helgaker, Jorgensen, and
Olsen, 2000). We use this example to discuss the general
characteristic features of ion-atom interactions.
For all ion-atom systems there exist two families of

electronic states associated with two possible arrangements
of the charge at the dissociation threshold. The relative
position of the lowest electronic states in the two possible
arrangements depends on the ionization potentials or
electron affinities of the monomers involved. In the case of
ðLiþ YbÞþ, at large internuclear distances, the charge can
be localized at lithium Liþ þ Yb or ytterbium Liþ Ybþ. The
Liþ þ Yb arrangement is the absolute ground state of the

FIG. 3. Transition electric dipole moments between singlet
states of the ðLiþ YbÞþ ion-atom system. Adapted from Tomza,
Koch, and Moszynski, 2015.

FIG. 2. Nonrelativistic molecular potential energy curves of
the ðLiþ YbÞþ ion-atom system. From Tomza, Koch, and
Moszynski, 2015.
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ðLiþ YbÞþ system because the ionization potential of the
Li atom is smaller than the one of the Yb atom. The charge
arrangements and interaction-induced charge-transfer proc-
esses are discussed in detail in Sec. II.C.
The long-range part of the interaction potential between an

S-state ion and an S-state atom in the electronic ground state is
given by (Hapka and Żuchowski, 2017)

VðRÞ ≈ −
Cind
4

R4
−
Cind
6

R6
−
Cdisp
6

R6
þ � � � ; ð2Þ

and it does not depend on the total spin of the resulting
molecular electronic state of the Σ symmetry. The leading
long-range induction coefficient is given by

Cind
4 ¼ 1

2
q2αatom; ð3Þ

where q is the charge of the ion and αatom is the static electric
dipole polarizability of the atom. The −Cind

4 =R4 term can be
interpreted as the interaction between the charge of the ion and
the induced electric dipole moment of the atom. The next
long-range induction coefficient in Eq. (2) is

Cind
6 ¼ 1

2
q2βatom; ð4Þ

where βatom is the static electric quadrupole polarizability
of the atom. The −Cind

6 =R6 term can be interpreted as the
interaction between the charge of the ion and the induced
electric quadrupole moment of the atom. The last term in
Eq. (2) describes the dispersion interaction and the long-range
dispersion coefficient is given by

Cdisp
6 ¼ 3

π

Z
∞

0

αionðiωÞαatomðiωÞdω; ð5Þ

where αatomðionÞðiωÞ is the dynamic electric dipole polar-
izability of the atom (ion) at imaginary frequency. The
dispersion term results from the interaction between instanta-
neous dipole-induced dipole moments of the ion and the atom
arising due to quantum fluctuations.
When an ion or an atom has a nonzero orbital angular

momentum, e.g., in the excited electronic state, the long-range
part of the interaction potential takes a more complex form
(Krych et al., 2011). For an atom in the 2Sþ1L electronic state
with a nonzero orbital angular momentum (L > 0) interacting
with an S-state atomic ion, the long-range part of the
interaction potential is

VðRÞ ≈ −
Celst
3

R3
−
Cind
4

R4
−
Celst
5

R5
−
Cind
6

R6
−
Cdisp
6

R6
þ � � � ; ð6Þ

and it does not depend on the total electronic spin of
the resulting molecular electronic state, but it depends on
the projection of the total orbital angular momentum onto the
internuclear axis jΛj. The new terms appearing in Eq. (6),
−Celst

3 =R3 and −Celst
5 =R5, describe the electrostatic interaction

between the charge of the ion and the quadrupole and
hexadecapole moments of the atom, respectively. The long-
range coefficients of Eq. (6) are given by (Krych et al., 2011)

Celst
3 ¼ qð−1Þ1þL−Λ

�
L 2 L

−Λ 0 Λ

�
h2Sþ1LjjQ2jj2Sþ1Li;

Cind
4 ¼ 1

2
q2
�
αatom0 þ 3Λ2 − 6

6
αatom2

�
;

Celst
5 ¼ qð−1Þ1þL−Λ

�
L 4 L

−Λ 0 Λ

�
h2Sþ1LjjQ4jj2Sþ1Li;

Cind
6 ¼ 1

2
q2βatomzz;zz;

Cdisp
6 ¼ 3

π

Z
∞

0

αion0 ðiωÞ
�
αatom0 ðiωÞ

þ 3Λ2 − 6

12
αatom2 ðiωÞ

�
dω; ð7Þ

where the expressions in parentheses are 3j symbols,
h2Sþ1LjjQ2ð4Þjj2Sþ1Li is the reduced matrix element of the
quadrupole (hexadecapole) moment, and α0ðiωÞ and α2ðiωÞ
are the scalar and tensor components of the dynamic electric
dipole polarizability at imaginary frequency of the atom in the
2Sþ1L state.
The electronic structure data including the potential energy

curves for the ground and excited electronic states, transition
electric dipole moments, and matrix elements of the spin-orbit
coupling have been calculated for several ion-atom systems
listed in Table I. Less accurate calculations for alkali-metal
molecular ions from the past century are not included in this list.
The long-range interaction coefficients were provided by

some authors of ab initio calculations together with full
potential energy curves, e.g., for ðRbþ BaÞþ (Krych et al.,
2011) or ðLiþ YbÞþ (Tomza, Koch, and Moszynski, 2015).
The long-range coefficients for Mgþ and Caþ (Mitroy and
Zhang, 2008), Srþ (Mitroy, Zhang, and Bromley, 2008), Liþ

and Beþ (Tang et al., 2010), and alkali-metal and alkaline-
earth-metal ions (Kaur et al., 2015; Singh et al., 2016)
interacting with selected neutral atoms were also reported.

2. Molecular ion and atom

The dimensionality of potential energy surfaces for polya-
tomic systems depends on the number of atoms and sym-
metries of the system. The actual topology and characteristics
of potential energy surfaces depend on the properties of
interacting species. The potential energy surfaces obtained
in ab initio quantum chemical calculations can be expanded in
spherical basis functions, which is especially convenient for
subsequent coupled-channel scattering calculations that make
use of the partial wave expansion.
For the simplest case of a diatomic molecular ion or a

polyatomic linear, axially symmetric molecular ion (in the
rigid rotor approximation) interacting with an atom, the
potential energy surface in Jacobi coordinates VðR; θÞ can
be expanded onto the basis of Legendre polynomials Pλð·Þ:

VðR; θÞ ¼
Xλmax−1

λ¼0

VλðRÞPλðcos θÞ; ð8Þ

where R is the distance between an atom and the center of
mass of a molecular ion and θ is the angle between the axis of
the molecular ion and the axis connecting the atom with the
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center of mass of the molecular ion. Different Vλ terms govern
inelastic rotational transitions, allowing for changing the
molecular rotation by Δj ¼ �λ.
An example potential energy surface for a C2H− molecular

anion interacting with a Rb atom is presented in Fig. 4
(Tomza, 2017). The corresponding Legendre components, as
defined by Eq. (8), are shown in the inset. The surface is
strongly anisotropic, with the first anisotropic Legendre term
V1ðRÞ almost as large as the isotropic one V0ðRÞ. The large
dipole moment (3.22 D) of the molecular ion, related to the
localization of the charge on the ending carbon atom, is
responsible for the observed anisotropy.
The long-range part of the interaction potential for the

simplest case of an axially symmetric molecular ion interact-
ing with an S-state atom is (Tomza, 2017)

VðR; θÞ ≈ −
Cind
4

R4
−
Cind
5;1

R5
cos θ −

Cind
6;0

R6
−
Cdisp
6;0

R6

−
�
Cind
6;2

R6
þ Cdisp

6;2

R6

�
P2ðcos θÞ þ � � � : ð9Þ

The long-range parts of the corresponding Legendre compo-
nents in Eq. (8) are

V0ðRÞ ≈ −
Cind
4

R4
−
Cind
6;0

R6
−
Cdisp
6;0

R6
þ � � � ;

V1ðRÞ ≈ −
Cind
5;1

R5
þ � � � ;

V2ðRÞ ≈ −
Cind
6;2

R6
−
Cdisp
6;2

R6
þ � � � : ð10Þ

The leading long-range induction coefficients are

Cind
4 ¼ 1

2
q2αatom;

Cind
5;1 ¼ 2dionqαatom;

Cind
6;0 ¼ 1

2
q2βatom þ d2ionα

atom;

Cind
6;2 ¼ 2Θionqαatom þ d2ionα

atom; ð11Þ

where q is the charge of the molecular ion, αatom is the static
electric dipole polarizability of the atom, dion is the permanent

TABLE I. Atomic ion-atom systems ðAþ BÞþ investigated theoretically in the context of cold or ultracold studies. The charge configurations
relevant for corresponding experimental works are given.

Ion Atom Reference

Beþ Li Rakshit and Deb (2011) and Ghanmi, Farjallah, and Berriche (2017)
Beþ Na=Ka=Rb Ladjimi et al. (2018)
Mgþ Li ElOualhazi and Berriche (2016)
Caþ Li Saito et al. (2017)
Caþ Na Makarov et al. (2003) and Gacesa et al. (2016)
Caþ Rb Tacconi, Gianturco, and Belyaev (2011) and Belyaev et al. (2012)
Ca=Sr=Ba=Ybþ Rb da Silva et al. (2015)
Srþ Li Jellali et al. (2016)
Srþ Li=Na=K=Rb=Cs Aymar, Gurout, and Dulieu (2011)
Srþ Na Bellaouini et al. (2018)
Baþ Rb Knecht et al. (2010) and Krych et al. (2011)
Ybþ Rb Lamb et al. (2012), Sayfutyarova et al. (2013), and McLaughlin et al. (2014)
Ybþ Li Tomza, Koch, and Moszynski (2015), da Silva et al. (2015), and Joger et al. (2017)
Ca=Sr=Ba=Ybþ Cr Tomza (2015)
Liþ Li Bouzouita, Ghanmi, and Berriche (2006), Bouchelaghem and Bouledroua (2014),

and Musiał, Medrek, and Kucharski (2015)
Naþ Li Li et al. (2015) and Musiał et al. (2018)
Naþ Na Berriche (2013) and Bewicz, Musiał, and Kucharski (2017)
Kþ Li Berriche, Ghanmi, and Ouada (2005), Ghanmi, Berriche, and Ouada (2007),

and Musiał et al. (2018)
Kþ Na Ghanmi, Berriche, and Ouada (2006)
Kþ K Skupin, Musiał, and Kucharski (2017)
Rbþ Li Ghanmi, Farjallah, and Berriche (2012) and Rakshit et al. (2016)
Rbþ Na Ghanmi et al. (2007) and Yan et al. (2013, 2014)
Rbþ Rb Jraij et al. (2003) and Jyothi et al. (2016)
Csþ Li Ghanmi et al. (2006), Korek et al. (2006), Li et al. (2013), and Rakshit et al. (2016)
Csþ Na Ghanmi et al. (2006) and Rakshit et al. (2016)
Csþ Cs Jraij et al. (2005) and Jamieson et al. (2009)
Beþ Be Banerjee et al. (2010) and Zhang et al. (2011)
Mgþ Mg Li et al. (2013) and Alharzali et al. (2018)
Caþ Ca S. Banerjee et al. (2012) and Li et al. (2013)
Ybþ Ca Petrov, Makrides, and Kotochigova (2017)
Ybþ Yb Zhang, Dalgarno, and Côté (2009)
Srþ Cl Puri et al. (2014)
Baþ Cl Chen et al. (2011)
Dyþ Cl Dunning et al. (2015)
Cþ Li=Be Wells and Lane (2011)
Hþ S Shen et al. (2015)
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electric dipole moment of the molecular ion, Θion is
the permanent electric quadrupole moment of the molecular
ion, and βatom is the static electric quadrupole polarizability
of the atom. The leading long-range dispersion coefficients
are

Cdisp
6;0 ¼ 3

π

Z
∞

0

ᾱionðiωÞαatomðiωÞdω;

Cdisp
6;2 ¼ 1

π

Z
∞

0

ΔαionðiωÞαatomðiωÞdω; ð12Þ

where αatomðionÞðiωÞ is the dynamic polarizability of the atom
(ion) at imaginary frequency, and the average polarizability
and polarizability anisotropy are given by ᾱ ¼ ðαk þ 2α⊥Þ=3
and Δα ¼ αk − α⊥, respectively, with αk and α⊥ being the
components of the polarizability tensor parallel and
perpendicular to the internuclear axis of the molecular ion.
The new terms appearing in the long-range multipole

expansion of the intermolecular interaction energy in
Eq. (9), as compared to Eqs. (2) and (6), are due to the

possible permanent electric dipole and quadrupole moments
and the polarizability anisotropy of a molecular ion. The
−Cind

5;1=R
5 cos θ term describes the interaction between

the permanent electric dipole moment of a molecular ion
and the induced electric dipole moment of an atom. The first
term in −Cind

6;0=R
6 describes the interaction between the

charge of a molecular ion and the induced electric quadrupole
moment of the atom, whereas the second one describes the
interaction between the permanent electric dipole moment of
the molecular ion and the higher-order induced electric dipole
moment of an atom. The first term in −Cind

6;2=R
6 describes the

interaction between the permanent electric quadrupole
moment of a molecular ion and the induced electric dipole
moment of an atom, and the second one is the same as in
−Cind

6;0=R
6. The long-range anisotropy of the dispersion

interaction is due to the polarizability anisotropy of a
molecular ion. If the atom has a nonzero orbital angular
momentum then Eq. (9) has to be extended to include terms
describing the electrostatic interaction between the charge and
electric moments of the molecular ion and electric moments
of the atom, similarly as in Eq. (6).
The potential energy surfaces have been investigated for

several molecular ions interacting with atoms in the context of
cold or ultracold studies as depicted in Table II. Considerably
large interest in interactions involving helium atom is caused
by its potential to act as a versatile sympathetic cooler for
molecular ions without undergoing inelastic processes, as
described in further sections of this review.

3. Atomic ion and molecule

The short-range part of the interaction potential for an
atomic ion interacting with a molecule can, in principle, be
similar to the one for a molecular ion interacting with an atom.
The essential difference in the interaction potential for these
two systems lies in the long-range part.
The long-range part of the interaction potential for the

simplest case of an S-state atomic ion interacting with an
axially symmetric molecule is (Heijmen et al., 1996; Hapka
and Żuchowski, 2017)

FIG. 4. The ground-state potential energy surface for the C2H−

molecular anion interacting with the Rb atom. The inset shows
the corresponding Legendre components. Adapted from Tomza,
2017.

TABLE II. Molecular ion-atom systems investigated theoretically in the context of cold or ultracold studies.

Ion Atom Reference

OH− Rb Gonzalez-Sanchez et al. (2008), Byrd et al. (2013),
and Kas et al. (2016)

MgHþ Rb Tacconi and Gianturco (2008, 2009a)
CN− Rb=Sr Midya et al. (2016)
BaClþ Ca Stoecklin et al. (2016)
OH−=CN−=NCO−=C2H−=C4H− Li=Na=K=Rb=Cs Tomza (2017)
OH−=CN−=NCO−=C2H−=C4H− Mg=Ca=Sr=Ba Tomza (2017)
OH− Li=Na=K=Rb=Cs Kas et al. (2017)
OH− Mg=Ca=Sr=Ba=Be Kas et al. (2017)
C−
2 Li=Rb Kas et al. (2019)

OHþ=OH− He González-Sánchez et al. (2006) and Marinetti, Bodo,
and Gianturco (2006)

CHþ He Hammami et al. (2008) and Stoecklin and Voronin (2008)
LiH− He López-Durán, Tacconi, and Gianturco (2009)
NOþ He Stoecklin and Voronin (2011)
SH− He Bop et al. (2017)
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VðR; θÞ ≈ −
Celst
2;1

R2
cos θ −

Celst
3;2

R3
P2ðcos θÞ −

Celst
4;3

R4
P3ðcos θÞ

−
Cind
4;0

R4
−
Cind
4;2

R4
P2ðcos θÞ þ � � � ; ð13Þ

where the first three terms describe the electrostatic interaction
between the charge of the atomic ion and the permanent
electric dipole, quadrupole, and octupole moments of the
molecule, respectively. The last terms represent the induction
interaction typical for ion-neutral systems with an additional
anisotropic part resulting from the anisotropy of the molecular
electric dipole polarizability.
The leading long-range electrostatic coefficients are

Celst
2;1 ¼ qdmol;

Celst
3;2 ¼ 1

2
qΘmol;

Celst
4;3 ¼ 1

4
qΩmol; ð14Þ

where dmol, Θmol, and Ωmol are the permanent electric dipole,
quadrupole, and octupole moments of the molecule, respec-
tively. The leading long-range induction coefficients are

Cind
4;0 ¼ 1

2
q2ᾱmol;

Cind
4;2 ¼ 1

6
q2Δαmol; ð15Þ

where ᾱmol and Δαmol are the average electric dipole polar-
izability and polarizability anisotropy of the molecule,
respectively.
If an atomic ion with a nonzero orbital angular momentum

or a molecular ion interacts with a molecule, then Eq. (13) has
to be extended to include terms describing the electrostatic
interaction between the charge and the electric moments of
involved species, resulting in terms similar to Eqs. (6) and (9).
The potential energy surfaces have been investigated for

several atomic ions interacting with molecules in the context
of cold or ultracold studies: Liþ þ D2 (Bovino, Bodo, and
Gianturco, 2008), Arþ þ N2 (Trippel et al., 2013), and H− þ
HCN (Satta et al., 2015).

B. Ion-atom collisions

Having described the interparticle interactions, we can now
turn to the collisional phenomena. The Schrödinger equation
for the relative nuclear motion of two colliding species (e.g.,
an ion Aþ and an atom B) may be written in the form

�
−
ℏ2

2μ
∇2 þ VðR; τÞ þHmonðτÞ

�
ΨðR; τÞ ¼ EΨðR; τÞ; ð16Þ

where ðℏ2=2μÞ∇2 is the kinetic energy operator, μ is the
reduced mass, τ ¼ ðτAþ ; τBÞ denotes all coordinates (internal
degrees of freedom of the monomers Aþ and B) except the
intermolecular distance R, VðR; τÞ is the interatomic or
intermolecular interaction potential, HmonðτÞ ¼ HAþðτAþÞ þ
HBðτBÞ is the Hamiltonian describing the internal degrees of
freedom of the monomers Aþ and B, and ΨðR; τÞ denotes the
total wave function with the energy E.

The total wave function can be decomposed into the basis
set of N channel functions fΘiðτÞgNi¼1:

ΨðR; τÞ ¼
X
i

ΦiðRÞΘiðτÞ=R: ð17Þ

Channel functions describe the internal states of the mono-
mers as well as contain spherical harmonics Ym

l ðθ;ϕÞ which
are eigenstates of the orbital angular momentum operator for
end-over-end motion of the two colliding particles around one
another. Channels with different values of l are referred to as
different partial waves (l waves).
Substituting ΨðR; τÞ into the Schrödinger equation (16)

gives a set of coupled equations

�
−
ℏ2

2μ

∂2

∂R2
þWðRÞ

�
ΦðRÞ ¼ EΦðRÞ; ð18Þ

where ΦðRÞ is a matrix of N linearly independent
radial solutions and WðRÞ is a matrix describing the
effective interaction, with elements given by WijðRÞ ¼
hΘiðτÞjVðR; τÞ þHmonðτÞjΘjðτÞi.
The set of coupled equations (18) can be solved numerically

using some propagation method, e.g., the renormalized
Numerov approach (Johnson, 1978) or the log-derivative
propagator (Johnson, 1973). By imposing the long-range
scattering boundary conditions on ΦðRÞ in terms of Bessel
functions

ΦðRÞ⟶R→∞½JðRÞ −NðRÞK�A; ð19Þ

where JðRÞ and NðRÞ are diagonal matrices with proper
spherical Bessel functions and A is the normalization con-
stant, one can get the K reactance matrix, which gives the S
scattering matrix

S ¼ ð1þ iKÞ−1ð1 − iKÞ: ð20Þ

The energy-dependent scattering length an, partial elastic
cross section σnel, and partial inelastic cross section σnin for
channel n can be directly calculated from the S matrix

anðEÞ ¼
1

ikn

1 − Snn
1þ Snn

;

σnelðEÞ ¼
π

k2n
j1 − Snnj2;

σninðEÞ ¼
π

k2n
ð1 − jSnnjÞ2; ð21Þ

where kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðE − E∞

n Þ=ℏ2
p

is the channel wave vector and
E∞
n denotes the threshold energy. For k → 0, the s-wave

scattering length becomes energy independent. To get total
cross sections, the partial cross sections have to be summed up
over partial waves. Collision rate coefficients at a given
collision energy can be obtained from the cross sections by
the simple relation
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K ¼ ℏk
μ
σ: ð22Þ

For an atomic ion Aþ colliding with an atom Bwe can write
the specific form of the Hamiltonian in Eq. (16) (Idziaszek
et al., 2009, 2011; Tomza, Koch, and Moszynski, 2015;
Tscherbul, Brumer, and Buchachenko, 2016) as

Ĥ ¼ −
ℏ2

2μ

1

R
d2

dR2
Rþ l̂2

2μR2
þ V̂ðRÞ

þ V̂ssðRÞ þ V̂soðRÞ þ ĤAþ þ ĤB; ð23Þ

where l̂ is the rotational angular momentum operator. V̂ðRÞ is
the interaction potential, which depends on the total spin S and
its projection MS:

V̂ðRÞ ¼
X
S;MS

VSðRÞjS;MSihS;MSj: ð24Þ

The relativistic terms V̂ssðRÞ and V̂soðRÞ stand for the spin
dipole-dipole interaction and the second-order spin-orbit term,
respectively, and are responsible for dipolar relaxation

V̂ssðRÞ ¼ −
ffiffiffiffiffiffiffiffi
44π

5

r
α2

R3

X
q

Yq
2ðR̂Þ½ŝa ⊗ ŝb�ð2Þq ;

V̂soðRÞ ¼
ffiffiffiffiffiffiffiffi
44π

5

r
λsoðRÞ

X
q

Yq
2ðR̂Þ½ŝa ⊗ ŝb�ð2Þq : ð25Þ

The atomic Hamiltonian Ĥj (j ¼ Aþ, B), including hyperfine
and Zeeman interactions, is given by

Ĥj ¼ ζj îj · ŝj þ geμBŝj ·Bþ gjμN îj ·B; ð26Þ

where ŝj and îj are the electron and nuclear spin operators, ζj
denotes the hyperfine coupling constant, ge=j the electron and
nuclear g factors, μB=N the Bohr and nuclear magnetons, and
B the magnetic field.
Equations (16)–(26) have the same form as for neutral

species and are given here for completeness. The essential
difference between ion-atom and atom-atom scattering results
from the different asymptotic forms of the polarization
potential for ion-atom systems as described in the previous
section.
For the polarization potential

VðRÞ ¼ −
C4

R4
; ð27Þ

by equating the potential to the kinetic energy one can define
the characteristic interaction length scale R⋆:

R⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2μC4

ℏ2

r
: ð28Þ

While the scattering length can have any value, R⋆ establishes
the typical order of magnitude of the scattering length for an
ion-atom potential. The typical interaction length scales for

ion-atom systems are at least an order of magnitude larger as
compared to neutral atom-atom ones. The related energy scale
is given by

E⋆ ¼ ℏ2

2μðR⋆Þ2 : ð29Þ

The characteristic energy scale for ion-atom systems is at least
2 orders of magnitude smaller as compared to neutral atom-
atom systems. This is one of the reasons why reaching the
s-wave scattering regime for ion-atom systems is more
challenging as compared to neutral atom systems. The
characteristic lengths and energies for selected ion-atom
systems are collected in Table III. The smallest R⋆ and the
largest E⋆ are expected for systems with the smallest reduced
masses and atomic polarizabilities, thus such systems are the
most favorable for reaching the s-wave regime.
The energy E⋆ defines the height of the centrifugal barrier

for the p-wave (l ¼ 1) collision, whereas the length R⋆ gives
the position of the maximum of this centrifugal barrier. The
effective long-range ion-atom potentials for the lowest partial
waves in units of the characteristic energy and length are
presented in Fig. 5. The position and height of the centrifugal
barrier for higher partial waves are given by

Rmax
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

lðlþ 1Þ

s
R⋆;

Emax
l ¼ l2ðlþ 1Þ2

4
E⋆: ð30Þ

As shown in the previous discussion, in addition to
the polarization potential one can be dealing with multiple
additional interaction terms. Typically the higher-order part
is dominated by the 1=r4 term at low energies and can
become relevant at E≳ E6 with E6 ¼ ℏ2=2μR2

6 and R6 ¼
ð2μC6=ℏ2Þ1=4 defined in analogy to R⋆. On the other hand, the
dipolar term becomes increasingly important as the collision
energy is lowered.
Collisions can be classified as elastic, inelastic, and reactive

depending on their possible outcomes:
• An elastic collision is one in which the kinetic energy of
the relative motion of the two particles does not change,
although their individual kinetic energies and velocities
may change.

TABLE III. Characteristic length R⋆, characteristic energy E⋆, and
long-range induction interactions coefficientC4 for selected ion-atom
systems.

System R⋆ (a0) E⋆=h (kHz) C4 (Eha40)

40Caþ þ 6Li 1250 220.9 82
176Ybþ þ 6Li 1319 178.2 82
40Caþ þ 23Na 2081 28.56 81
40Caþ þ 87Rb 3989 4.143 160
88Srþ þ 87Rb 5049 1.620 160
135Baþ þ 87Rb 5544 1.111 160
172Ybþ þ 87Rb 5793 0.9313 160
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• An inelastic collision is one in which energy is trans-
ferred between internal and relative kinetic energy, but
the chemical constitution of the collision partners is
unchanged.

• A reactive collision is one in which the products are
chemically distinct from the reactants, usually also
involving a change in relative kinetic energy.

Elastic collisions are essential for thermalization of the
system as well as evaporative and sympathetic cooling. These
processes are feasible if the rate constant for elastic collisions
are at least 2 orders of magnitude larger than the rate constant
for inelastic and reactive ones. Inelastic collisions involve
processes such as changing spin or rotational state of the
colliding partners. The most important reactive collisions for
ion-neutral systems are charge-transfer processes. The nature
of charge-transfer processes is analyzed in the next section.
Figure 6 shows an example of rate constants for elastic and

charge-transfer reactive collisions of Caþ ions with Na atoms
obtained in quantum scattering calculations by Idziaszek et al.
(2009). For energies larger than 1 μK already a few partial
waves contribute to the total rate constant. For elastic collisions,
a single shape resonance from the partial wave l ¼ 4 is visible,
whereas for reactive collisions, sharper resonances, which are
characteristic for charge-transfer processes, can be observed.
The shape resonances are more pronounced for reactive
collision rate constants as compared to elastic ones because
the charge-transfer process is a short-range phenomenon and
the enhancement of the tunneling over the centrifugal barrier
to the short range significantly increases its probability. At the
same time, the rate constants for charge-transfer losses are
over 3 orders of magnitude smaller than the rate constants for
elastic collisions. This is typical for ion-atom systems with both
an ion and an atom in the ground states and with the entrance
threshold well separated from other electronic states.
The rate constants for reactive collisions in Fig. 6 are

additionally decomposed into contributions from free-to-free
and free-to-bound transitions, where the former leads to the
charge exchange between ions and atoms, whereas the latter
leads to the formation of molecular ions. It is characteristic for
charge-transfer processes in ion-atom systems that the radi-
ative formation of molecular ions is significantly more likely

than the radiative charge exchange. The radiative formation of
molecular ions is discussed in detail in Secs. II.C and VI.A.
In the regime dominated by single s-wave collisions and

vanishing collision energy, the energy dependence of the cross
sections and related rate constants for both elastic and inelastic
(reactive) collisions follows the Wigner threshold laws
(Wigner, 1948)

σlel ∼
k→0k4l;

σlin ∼k→0k2l−1; ð31Þ

where l is the angular momentum for the relative motion of
the colliding particles. This means that the rate constant for
reactive collisions should be energy independent in the
ultracold regime. Such behavior in ion-atom collisions is
predicted in theory (cf. Fig. 6) and expected in experiments
(cf. Sec. V.A).
Unfortunately, at the moment even the best state-of-the-art

ab initio methods do not allow one to accurately predict the
scattering lengths and consequently the exact shape resonance
pattern, for collisions between many-electron atoms, ions, or
molecules. Therefore, it is important to assess the dependency
of the results of scattering calculations of cross sections and
rate constants on the accuracy of the interaction potentials
and, when possible, to correct them using scattering data from
experiments. Figure 7 shows the sensitivity of the rate
constants for Ybþ colliding with Li on scaling the interaction
potential by a constant factor, in the range that corresponds to
the potential’s uncertainty (Tomza, Koch, and Moszynski,
2015). A weak dependence of the rate constants is observed
to only be interrupted by the presence of sharp resonances
that occur when bound states of the ion-atom system cross
the incoming threshold. Additionally, the ratio of elastic to

FIG. 5. Long-range ion-atom potential for the lowest partial
waves in units of the characteristic energy E⋆ and the character-
istic length R⋆. Dots show the positions of the maxima of the
centrifugal barriers. The inset shows the two lowest potentials.
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FIG. 6. Elastic collision rate constant in the singlet channel
A1Σþ (upper panel) and rate constant of radiative A1Σþ → X1Σþ

charge transfer (lower panel) vs collision energy in the Caþ þ Na
system. Both the elastic and the total reactive rate constants are
decomposed into selected partial waves. From Idziaszek et al.,
2009.
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inelastic rate constants is always significantly larger than 100,
which should be sufficient for successful sympathetic cooling
in this system.
The elastic collisions at intermediate collision energies E≳

10E⋆ can be described by using a semiclassical approxima-
tion. Côté and Dalgarno (2000) obtained for the polarization
potential the following expression for the elastic cross section:

σelðEÞ ¼ π

�
4μC2

4

ℏ2

�
1=3

�
1þ π2

16

�
1

E1=3 : ð32Þ

The inelastic and reactive collisions in the regime of
intermediate collision energies and large probability of
chemical reaction at short range can be successfully described
with the classical Langevin capture model (Levine, 2009).
In this model, rate constants for barrierless and exothermic
reactions are governed by the interplay between the long-
range part of the interaction potential and the centrifugal
barrier. If the collision energy for a given partial wave is larger
than the height of the centrifugal barrier, Eq. (30), then the
trajectory of the ion-atom collision is inward spiraling and
thus reactive. If the collision energy is smaller than the height
of the centrifugal barrier, then the trajectory is only weakly
modified in a so-called glancing collision. For a pure
polarization potential of the form given in Eq. (27), the
classical capture cross section is given by

σLðEÞ ¼ 2π

ffiffiffiffiffiffi
C4

E

r
; ð33Þ

and the corresponding Langevin rate constant for ion-atom
collisions KL ¼ ðℏk=μÞσL is independent of the collision
energy. The quantum calculations predict the same energy
independence using both the exact coupled-channel and
approximate (e.g., random phase approximation) approaches.
The classical model can be straightforwardly generalized to
the case in which the reaction does not happen at short range

with unit probability, but with some finite probability Pre. In
this case the Langevin rate coefficient should be simply
rescaled by Pre. The quantum version of this model, which
correctly reproduces low-energy scattering properties includ-
ing shape resonances, is discussed in Sec. II.D.

C. Radiative and nonradiative charge transfer

For all ion-neutral systems there exist two families of
electronic states associated with two possible arrangements of
the charge at the dissociation threshold: Aþ Bþ and Aþ þ B
(Aþ B− and A− þ B); see Fig. 8. Aþ Bþ is the absolute
electronic ground state if the ionization potential of B is
smaller than the ionization potential of A (Aþ B− is the
absolute electronic ground state if the electron affinity of B is
larger than the electron affinity of A).
If ionic and neutral species are separated by a large distance

and interatomic or intermolecular interactions are negligible,
then the second arrangement Aþ þ B (A− þ B) is also stable.
However, if Aþ (A−) and B species collide and interact, then
the interaction-induced transition electric dipole moment can
appear between electronic states associated with the Aþ þ B
and Aþ Bþ (A− þ B and Aþ B−) dissociation thresholds
[see, e.g., the transition moment between the X1Σþ and A1Σþ

states of the ðLiþ YbÞþ ion-atom system in Fig. 3]. This can
lead to collision- and interaction-induced spontaneous radi-
ative charge-transfer (RCT) processes

Aþ þ B → Aþ Bþ þ hν;

A− þ B → Aþ B− þ hν; ð34Þ

where the electron is spontaneously transferred from an atom
B (a negative ion A−) to a positive ion Aþ (an atom B) emitting
a photon of energy hν.
If the charge-transfer process of Eq. (34) is energetically

allowed, then also the spontaneous radiative association (RA)
driven by the transition between two electronic states can
happen

(a)

(b)

FIG. 7. Sensitivity of the rate constants for (a) elastic Kel and
reactiveKR scattering and of the (b) ratio of elastic to reactive rate
constants at collision energies of 10 μK (black solid lines) and
1 mK (red dashed lines) in the Ybþ þ Li system to a scaling
factor λ applied to the interaction potential VðRÞ → λ · VðRÞ.
From Tomza, Koch, and Moszynski, 2015.

FIG. 8. Schematic representation of possible charge-transfer
processes in cold ion-atom collisions: RA—radiative association,
RCT—radiative charge transfer, and nRCT—nonradiative charge
transfer. Exemplary electronic states and vibrational wave func-
tions are presented.
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Aþ þ B → ABþ þ hν;

A− þ B → AB− þ hν; ð35Þ

where an ion Aþ (A−) and an atom B spontaneously form an
ionic complex ABþ (AB−) emitting a photon of energy hν.
The spontaneous radiative association driven by the tran-

sition between rovibrational levels of one electronic state can
also happen for all polar complexes ABþ (AB−); however, rate
constants for such a process are much smaller and usually
negligible.
Two electronic states associated with the Aþ þ B and

Aþ Bþ (A− þ B and Aþ B−) dissociation thresholds can
also cross each other at short interatomic or intermolecular
distances; see Fig. 8. In the case of an atomic ion and an atom,
this will lead to an avoided crossing of two states coupled
by nonadiabatic coupling, whereas for molecular systems this
will be a conical intersection. In both cases, such a crossing
can lead to nonradiative charge transfer.
The charge-transfer and association processes can lead to

heating and loss of the ion because of the excessive energy
release. The list of hybrid heteronuclear ion-atom systems free
of charge-transfer radiative losses among the combinations of
the present experimentally accessible atomic ions and ultra-
cold atoms was presented by Tomza (2015) and is collected in
Table IV. Related possible arrangements of the charge and
electronic states in ion-atom systems are presented in Fig. 9.
Standard magnetically tunable Feshbach resonances, which
are essential for controlling ion-atom collisions and are
described in Sec. III.A, are expected when both ions and
atoms are open shell and more than one spin configuration is
possible for related dissociation threshold.
The radiative and nonradiative charge-transfer processes are

short-range phenomena because the non-negligible transition
electric dipole moments and crossings between electronic
states occur at relatively small interatomic or intermolecular
distances. Therefore, to predict rate constants for charge-
transfer processes the full interaction potentials and transition
electric dipole moments are needed. For the same reason,
charge-transfer processes lead mostly to the formation of
molecular ions rather than to charge exchange between the ion
and atom, as discussed in the previous section. The formation
of molecular ions in such a scenario is analyzed in detail in
Sec. VI.A.
Spontaneous radiative processes are governed by the

Einstein coefficients (Makarov et al., 2003; Idziaszek et al.,
2011; Krych et al., 2011; Tomza, Koch, and Moszynski,
2015). For transitions between two bound rovibrational states
vl and v0l0 (bound-bound), between a scattering state of
energy E and a bound state v0l0 (free-bound), and between

two scattering states of energies E and E0 (free-free), they are
given by

Avl;v0l0 ¼
4α3

3e4ℏ2
HlðEvl − Ev0l0 Þ3jhΨvljdðRÞjΨv0l0 ij2;

AEl;v0l0 ¼
4α3

3e4ℏ2
HlðE − Ev0l0 Þ3jhΨEljdðRÞjΨv0l0 ij2;

AEl;E0l0 ¼
4α3

3e4ℏ2
HlðE − E0Þ3jhΨEljdðRÞjΨE0l0 ij2; ð36Þ

respectively. In Eq. (36) the primed and unprimed quantities
pertain to the ground- and excited-state potentials, respec-
tively, dðRÞ is the transition electric dipole moment from the
ground to the excited electronic state, α is the fine-structure
constant, and e is the electron charge. The Hönl-London factor
Hl is equal to ðlþ 1Þ=ð2lþ 1Þ for the P branch (l ¼ l0 − 1),
and to l=ð2lþ 1Þ for the R branch (l ¼ l0 þ 1). In Eq. (36), the
scattering states jΨEli are energy normalized, whereas the
wave functions of bound levels are normalized to unity, such
that the three types of Einstein coefficients have different
dimensions.
Radiative charge transfer at a given collision energy E can

be described by the following Fermi golden rule type
expression for the rate constant:

KRCTðEÞ ¼
4π2ℏ2

μk

X∞
l¼0

ð2lþ 1Þ
X
l0¼l�1

Z
εmax

0

AEl;E0l0dε; ð37Þ

where ε ¼ E − E0. Analogously, the rate constant for radiative
association is given by

TABLE IV. Hybrid heteronuclear ion-atom systems without charge-transfer radiative losses among the combinations of the present
experimentally accessible atomic ions and ultracold atoms, all in the ground electronic state. From Tomza, 2015.

Nature of ion/atom Systems without charge-transfer radiative losses

Open-shell/open-shell Baþ=Li, Caþ=Cr, Srþ=Cr, Baþ=Cr, Ybþ=Cr, Srþ=Dy, Baþ=Dy, Srþ=Er, Baþ=Er
Open-shell/closed-shell Caþ=Mg, Srþ=Mg, Baþ=Mg, Ybþ=Mg, Srþ=Ca, Baþ=Ca, Baþ=Sr, Caþ=Yb, Srþ=Yb, Baþ=Yb
Closed-shell/open-shell Naþ=Li, Kþ=Li, Rbþ=Li, Csþ=Li, Kþ=Na, Rbþ=Na, Csþ=Na, Rbþ=K, Csþ=K, Csþ=Rb

Alkali-metal ion=Cr, alkali-metal ion=Dy, alkali-metal ion=Er
Closed-shell/closed-shell Alkali-metal ion/alkaline-earth-metal atom (except Liþ=Ba)

FIG. 9. Selected possible arrangements of the charge and
electronic states in ion-atom systems. (a) Typical for alkali-metal
ions interacting with alkali-metal atoms and (b) and (c) for
alkaline-earth-metal ions interacting with alkali-metal atoms.
Magnetically tunable Feshbach resonances are expected for
Aþ þ B and Aþ Bþ collisions in (b) and (c), respectively.
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KRAðEÞ ¼
4π2ℏ2

μk

X∞
l¼0

ð2lþ 1Þ
X
l0¼l�1

X
v0

AEl;v0l0 : ð38Þ

The total rate constant for radiative losses at a given collision
energy E is the sum of Eqs. (37) and (38),

KðEÞ ¼ KRCTðEÞ þ KRAðEÞ: ð39Þ

To get thermal rate constants at a given temperature T, the
energy-dependent rate constants have to be averaged over a
thermal distribution

KðTÞ ¼ hKðEÞiT: ð40Þ

However, for ion-atom systems the energy distribution can be
different from the standard Maxwell-Boltzmann one due to
the presence of micromotion. This is discussed in detail in
Sec. IV.C.
Radiative and nonradiative charge transfer have been

experimentally investigated for several cold ion-atom systems
and these results are presented in Sec. V.A. It has also been
theoretically investigated for several ion-atom systems rel-
evant for ongoing experimental efforts: Caþ þ Na (Makarov
et al., 2003; Gacesa et al., 2016), Baþ þ Rb (Krych et al.,
2011), Ybþ þ Rb (Sayfutyarova et al., 2013; McLaughlin
et al., 2014), Ybþ þ Li (Tomza, Koch, and Moszynski, 2015;
da Silva et al., 2015), ðRbþ Ca=Sr=Ba=YbÞþ (da Silva et al.,
2015), Ybþ þ Ca (Zygelman, Lucic, and Hudson, 2014;
Petrov, Makrides, and Kotochigova, 2017), Liþ þ Na (Li
et al., 2015), Naþ þ Rb (Yan et al., 2013, 2014), Beþ þ Li
(Rakshit and Deb, 2011), Hþ þ Na=K (Watanabe et al.,
2002), and Hþ þ D (Esry et al., 2000; Bodo, Zhang, and
Dalgarno, 2008). The nonradiative charge transfer driven by
nonadiabatic couplings has been theoretically investigated for
Caþ þ Rb (Tacconi, Gianturco, and Belyaev, 2011; Belyaev
et al., 2012) and Ybþ þ Rb (Sayfutyarova et al., 2013).

D. Quantum defect theory

As demonstrated in the previous sections, the two-body ion-
atom problem exhibits a rich variety of multichannel phenom-
ena and represents a challenge for theoretical calculations.
On the other hand, ion-atom systems share several universal
properties, in particular, the form of the long-range interaction,
which is typically dominated by a polarization potential which
scales as 1=R4. This becomes particularly important at low
temperatures, when the long-range part of the potential, which
affects collisions with low momenta, becomes crucial for the
dynamics. Multichannel quantum defect theory (MQDT)
allows us to make use of the simple form of the long-range
potential and to describe the properties of ion-atom systems
with minimal numerical effort. While originally developed to
describe the electronic structure of atoms, it found widespread
applications in atomic and molecular physics (Greene, Fano,
and Strinati, 1979; Seaton, 1983; Mies, 1984; Greene and
Jungen, 1985; Gao, 1998; Gao et al., 2005). The basic idea of
MQDT is to make use of the fact that the interaction potential
approaches a simple form at large interparticle distances. For
atomic and molecular collisions the long-range potential is

indeed given by the leading dispersive term and the coupling
between different channels typically vanishes. This is espe-
cially important at low collision energies ≲E⋆, since in such a
case the collision partners approach each other more slowly
and thus the long-range part of the potential has decisive
impact on the collision process. Power-law potentials such
as the van der Waals and polarization ones are particularly
appealing since one can benefit from analytical solutions of
the Schrödinger equation at long range.
The first treatment of the polarization potential using

quantum defect methods was performed by Watanabe and
Greene (1980) in the context of negative ion photodetachment.
We now briefly review the MQDT treatment of low-energy
ion-atom collisions following Mies (1984) and Idziaszek et al.
(2009, 2011). An equivalent treatment based on a slightly
different formulation was developed by Gao (2010, 2013), Li
and Gao (2012), and Li, You, and Gao (2014), allowing for
additional insight, e.g., into the characterization of scattering
resonances. A similar approach was also developed by Raab
and Friedrich (2009) to describe the bound states of the
polarization potential.
Consider a general multichannel two-body problem, where

the channels account for the hyperfine structure and for
different partial waves, described by a close-coupled radial
Schrödinger equation as in Eq. (18):

∂2ΦðRÞ
∂R2

þ 2μ

ℏ2
½EI −WðRÞ�ΦðRÞ ¼ 0; ð41Þ

where I is the identity matrix and WðRÞ is the interaction
matrix, which includes couplings between different channels,
but reaches the asymptotic form

Wij⟶
R→∞

�
E∞
i þ ℏ2liðli þ 1Þ

2μR2
−
C4

R4

�
δij: ð42Þ

Here E∞
i is the threshold energy of channel i. The solution

matrix ΦðRÞ can be split into blocks describing energetically
open (o) [E∞

i < E] and closed (c) [E∞
i > E] channels. One

now replaces the interaction WðRÞ with a set of reference
potentials fViðRÞg which can be arbitrary as long as they
reproduce the behavior of W at large distances. Two linearly
independent solutions of this new system can be denoted as f̂i,
ĝi. The solution matrix can then be written as

ΦðRÞ⟶R→∞½f̂ðRÞ þ ĝðRÞY�A; ð43Þ

where Y is called the quantum defect matrix and it contains all
relevant information about the short-range potential details,
and A gives the amplitudes. Since typically deviations from
the asymptotic form of the interaction occur in the region
where the potential is much deeper than typical energy scales
such as E⋆, the Y matrix is expected to only weakly depend on
the collision energy.
The f̂, ĝ functions can be explicitly connected to long-

distance scattering (denoted as f, g) and bound state (ϕ)
solutions by means of the MQDT functions C, λ, and ν:
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fiðRÞ ¼ C−1
i ðEÞf̂iðRÞ;

giðRÞ ¼ CiðEÞ½ĝiðRÞ þ tan λif̂iðRÞ�;
ϕiðRÞ ¼ N ðEÞ½cos νiðEÞf̂iðRÞ − sin νiðEÞĝiðRÞ�; ð44Þ

where N ðEÞ is the normalization factor. All the properties
of the system are given by the scattering matrix S and by the
structure of the bound states. These can be determined from
the quantum defect matrix Y and the quantum defect functions
according to (Mies, 1984)

Soo ¼ eiξooð1þ iRooÞð1 − iRooÞ−1eiξoo ; ð45Þ

where iξoo is a diagonal matrix of phase shifts associated with
the reference potentials ξij ¼ ξiδij and

Roo ¼ C−1ðEÞ½Ȳ−1
oo − tan λðEÞoo�−1C−1ðEÞ: ð46Þ

Here Ȳoo is the open-channel block of the Y matrix,
renormalized due to the presence of closed channels

Ȳoo ¼ Yoo − Yoc½tan νðEÞcc þ Ycc�−1Yco: ð47Þ

The bound states of the system can be found by making all
channels closed and by solving the equation

det ½Y þ tan νðEÞ� ¼ 0: ð48Þ

Gao (2013) derived a highly general method allowing one to
study the resonance spectrum using an expression with very
similar form.
The presented formalism is general and it can be applied

to any collisional problem. The specific features of ion-atom
systems are contained in the quantum defect functions C, λ,
and ν and in the structure of the Y matrix. The quantum defect
functions can be obtained by considering the single channel
Schrödinger equation reduced to the dimensionless form by
using R⋆, E⋆ units (in the remaining part of this section we use
these dimensionless units unless otherwise stated)

∂2ΦðRÞ
∂R2

þ
�
E −

lðlþ 1Þ
R2

−
1

R4

�
ΦðRÞ ¼ 0: ð49Þ

For the case of the single channel the wave function at short
range can be parametrized using the short-range phase ϕ
which determines the scattering length of the full potential.
The next step is mapping onto the Mathieu equation by
substituting ΦðRÞ ¼ ψðzÞz1=2 (Vogt and Wannier, 1954;
O’Malley, Rosenberg, and Spruch, 1962):

d2ψ
dz2

− ½a − 2q coshð2zÞ�ψ ¼ 0; ð50Þ

with a ¼ ðlþ 1=2Þ2 and q ¼ ffiffiffiffi
E

p
. The Mathieu equation can

be solved analytically to find the properties of both bound and
scattering states. The detailed recipe for finding the quantum
defect functions knowing the analytic solutions was given by
Idziaszek et al. (2011).

The analytic structure of the bound states of the polarization
potential has several remarkable properties. First, they have
l ¼ 2 periodicity: for even values of l the bound states appear
at threshold when the s-wave scattering length diverges
(a ¼ �∞), while for odd l this happens at a ¼ 0.
Furthermore, the energy of the near-threshold s-wave bound
states is given by

E ¼ −
1

a2
þ 2π

3

1

a3
þOð1=a4Þ: ð51Þ

The first term in Eq. (51) describes the universal scaling of the
weakly bound-state energy for contact interactions, while the
second is the leading order correction coming from the long-
range nature of the potential. An example of the bound-state
spectrum is shown in Fig. 10. The l ¼ 2 periodicity is clearly
visible at the threshold.
An important part of the MQDT calculation is to determine

the quantum defect matrix. This can be done by numerically
solving the close-coupled Schrödinger equation at short range
up to a distance when interchannel couplings become negli-
gible. A simple alternative method is to use a frame trans-
formation technique (Burke, Greene, and Bohn, 1998). If both
atom and ion are in their electronic ground states, the channel
states are the hyperfine structure eigenstates characterized by a
set of quantum numbers jfimifamalmli. At short distances the
proper quantum numbers are the molecular ones with total
nuclear spin I ¼ ii þ ia and total electron spin S ¼ si þ sa.
The quantum defect matrix in the molecular basis is diagonal,
and it can be parametrized as

YIS
αα0 ¼ δαα0 ðaαÞ−1; ð52Þ

where aα is the s-wave scattering length characterizing the
channel α for ϕ ¼ 0. Then theY matrix in the asymptotic basis
can be obtained by the unitary transformation Y ¼ UYISU†.
In this way the problem is parametrized with very few
unknown quantities.
MQDT methods can also be extended to take into account

reactive processes such as charge exchange and radiative

FIG. 10. Bound-state energies of the polarization potential as a
function of the short-range phase ϕ for the first few lowest partial
waves. From Idziaszek et al., 2011.
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association (Idziaszek et al., 2009; Li and Gao, 2012; Li, You,
and Gao, 2014). It turns out that if the reaction process is
barrierless and sufficiently exoergic, i.e., the exit channel
threshold is far below the initial state, and if the reaction takes
place at length scales R0 ≪ R⋆, it is possible to benefit from
the separation of scales and to analytically derive a number of
universal properties of the reaction process that depend only
on the form of the long-range potential (Idziaszek and
Julienne, 2010; Gao, 2011; Jachymski et al., 2013, 2014).
In this case a simple and intuitive parametrization of the short-
range wave function can be given in a Wentzel-Kramers-
Brillouin (WKB)-like form (Idziaszek and Julienne, 2010;
Sakimoto, 2016)

ψðRÞ ∼ exp ½−i R kðRÞdR�ffiffiffiffiffiffiffiffiffiffi
kðRÞp −

1 − y
1þ y

exp ½i R kðRÞdR�ffiffiffiffiffiffiffiffiffiffi
kðRÞp ; ð53Þ

where kðRÞ is the local wave vector. Here the first term
describes the flux coming into the reaction region, and the
second one is the outgoing flux with amplitude reduced by
the factor ð1 − yÞ=ð1þ yÞ, where 0 ≤ y ≤ 1. The short-range
reaction probability can be expressed as Pre ¼ 4y=ð1þ yÞ2. In
the limit y → 1, there is no outgoing flux and so one can
expect that the reaction will not be sensitive to the short-range
potential at all. Finite reaction probability results in a series of
shape resonances in different partial waves. It is possible to
derive their positions and widths based on the analytic
structure of the theory (Gao, 2013; Jachymski et al., 2013)
as well as by a semiclassical treatment (Jachymski et al., 2014;
Sakimoto, 2016).
At high collision energies, the results derived within this

framework agree with the classical Langevin model, which
assumes that every classical trajectory falling on the collision
center contributes to the reaction with probability Pre, and it
predicts that for a 1=R4 interaction the rate constant does not
depend on the collision energy (obviously, the classical
Langevin model does not predict any resonances). At low
energies, the rate coefficient approaches the constant s-wave
limit, in agreement with Wigner threshold laws

Kre⟶
E→0 2hR⋆y

μ

1þ s2

1þ y2s2
; ð54Þ

where s is the scattering length of the reference potential given
in units of R⋆.
As expected, in the universal limit y → 1 the rate constant

does not depend on s. Universal reaction does not lead to any
scattering resonances. In practice, ion-atom collisions tend to
have a small y parameter ≲0.01 when both ion and atom are
in the ground electronic state. The predictions of this simple
model are in very good agreement with numerical calculations
performed for different systems; see, e.g., Lara, Jambrina,
Launay, and Aoiz (2015).
Figure 11 shows the rate constants for Caþ þ Na charge

transfer and radiative association processes calculated using
MQDT. A full numerical solution of the close-coupled
problem is in excellent agreement with the quantum defect
results.

E. Ion impurity in a many-body system

When a charged particle is placed in a polarizable medium,
the induced polarization around it will follow its motion. The
mobility and transport properties of the ion can thus be
strongly influenced by the structure of the medium as well
as the particle-environment interactions. For instance, charge-
exchange collisions increase the mobility of the charge in the
gas (Dalgarno, 1958). Côté (2000) found that the total charge
mobility of Naþ in its parent gas presents a sharp enhancement
as the temperature is reduced, showing a transition from an
almost insulating to a conducting state at a few μKwith typical
magneto-optical trap (MOT) densities due to an enhanced
charge hopping rate.
Other types of effects can be found when one considers

correlations in the medium, especially those originated by
interactions. For example, dragging an impurity through the
fluid and measuring the dissipation can be used to probe
whether a superfluid has been formed. In this regard, the first
experiments on the dynamics of an ion impurity date back to the
late 1950s, when the mobility of an ion in liquid helium was
investigated (Williams, 1957; Careri et al., 1958; Meyer and
Reif, 1958) and used to probe its superfluid properties (Reif and
Meyer, 1960; Rayfield and Reif, 1964). An unexpected slow
motion of the ion within the liquid helium was observed and
explained by a phenomenological model in which electro-
striction effects increase the liquid density around the ion,
leading to an increased effective mass (Atkins, 1959; Kuper,
1961). Gross (1962) developed a systematic microscopic
quantum theory based on the self-consistent field approxima-
tion for an ion impurity coupled to a weakly interacting
homogeneous ensemble of bosons and confirmed that the
effective ion mass can be much higher than its bare mass.
From the point of view of condensed-matter physics, the

system of a charged impurity immersed in a many-body
environment is the crucial building block for the

FIG. 11. Radiative charge-transfer rate constants for the Caþ þ
Na system assuming a scattering length a ¼ R⋆. The predictions
of the quantum defect model (solid black lines) with fitted
reaction probability are compared with the full numerical
calculation (blue triangles). The red squares show the contribu-
tion of the free-free transitions (charge transfer), while the green
circles stand for the free-bound transitions (radiative association).
The dashed line gives a thermal average of the rate constants, and
the thin gray line is the Langevin rate constant. From Idziaszek
et al., 2011.
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understanding of solids. Real materials contain multiple
interacting electrons and ions, which leads to extremely large
Hilbert space, and therefore soon becoming theoretically
intractable from an ab initio perspective. However, one can
consider a single electron interacting with crystal deforma-
tions (phonons) as first done by Fröhlich (1954), who
proposed to describe it with the Hamiltonian

Ĥ ¼ E0
env þ

p̂i

2mi
þ
X
k≠0

ℏωkâ
†
kâk þ

X
k

Vke−ik·rðâk þ â†−kÞ:

ð55Þ

Here p̂i is the momentum of the impurity of mass mi, E0
env is

the zero-temperature energy of the environment in which the
impurity is immersed (the phonon bath), âk (â†k) denotes the
annihilation (creation) operator of the phonon of frequencyωk,
and Vk is the Fourier transform of the impurity-environment
interaction, which is essentially two body but involves envi-
ronment excitation instead of a real atom. One can now
construct a new quasiparticle composed from lattice phonons
with momenta q and the electron with k − q, which is called
the polaron. The polaron, which is a quasiparticle dressed by
the polarization cloud, is an extremely relevant concept in order
to understand transport, optical response, and induced inter-
actions in solid-state materials. Polarons are characterized by
their self-energy, effective mass, and response to external (e.g.,
electric andmagnetic) fields (Devreese andAlexandrov, 2009).
This kind of description is generic and can be developed for

both neutral as well as charged impurities and various types of
bath such as thermal gases, phonons in a crystal, or strongly
correlated Bose or Fermi gases. In the case of a Bose-Einstein
condensate (BEC) the role of phonons is played by the
Bogoliubov excitations, for which an extended Fröhlich
model taking into account higher-order scattering processes
can be derived (Rath and Schmidt, 2013). The charge of the
ion does not lead to any fundamental differences with respect
to neutral atoms. The long-range nature of the potential,
however, will manifest itself in increased importance of finite
energy and finite range effects. Depending on the ratio α
between the impurity-bath interaction strength and the inter-
action between the bath constituents, the polarons can be
divided into two main categories: weak and strong coupling
polarons. For instance, for an ion immersed in an atomic
condensate we can take α ¼ ðR⋆Þ4=aaa3Dξ3, with ξ being the
healing length of the condensate (Casteels, Tempere, and
Devreese, 2011). The strong coupling limit (i.e., α ≫ 1) is
typically quite difficult to attain in condensed-matter systems.
Neutral impurities in a BEC can reach α ≫ 1 by means of
Feshbach resonances (Tempere et al., 2009) as recently
demonstrated in experiments (Hu et al., 2016; Jørgensen
et al., 2016), but a charged impurity may lead to the strong
coupling polaronic limit in a more direct way as a conse-
quence of the large characteristic interaction length R⋆.
Another possible effect which stems from the long-range

character of the interactionswasdiscussedbyCôté,Kharchenko,
and Lukin (2002), who suggested the possible existence of a
state in which a large number of ultracold atoms is bound to the
ion forming a cluster with complex structure. Such mesoscopic

molecular ions can be in principle produced either by collisions
or by spontaneous or laser-stimulated photoassociation; see
Fig. 12. For the latter, one could employ a Raman transitionwith
two off-resonant and copropagating laser beams. In this way, the
transition from the condensate to the molecular bound state
occurs with negligible momentum transfer to the atoms. It was
theoretically predicted by Côté, Kharchenko, and Lukin (2002),
bymeansof amean-field rate-equation analysis, that hundreds of
atomscouldbe captured in such looselybound states in about 1 s.
This phenomenon occurs through superelastic collisions, in
which the excess energy is transferred into a collective excita-
tion, i.e., with the emission of an acoustic Bogoliubov phonon.
Formation of such a state would therefore be impossible in a
thermal gas. The capture rate of the atoms into the mesoscopic
ion Wcap is controlled by the dimensionless parameter
Ξ ¼ 8πnba2aaaμ=ma with aaa and a denoting the atom-atom
and ion-atom scattering length, respectively, and nb being the
Bose gas density. Two main physical regimes were identified:
(i) the phononlike regime, for which Ξ → ∞ and Wcap ∝
ℏ=maa3

ffiffiffiffiffiffiffiffiffiffiffi
nbaaa

p
, meaning that the capturing process is domi-

nated by phonon-assisted transitions; (ii) the binary regime, for
which Ξ → 0 (i.e., nbaaa ≪ 1, dilute condition) and Wcap ∝
ℏn2bðaaaÞ2a2=ma so that the capture process occurs essentially
because of three-body recombination events. Other effects such
as charge hopping or thermal fluctuations limit the maximum
number of captured atoms Nmax. Côté, Kharchenko, and Lukin
(2002) estimated that for sodium atoms at T ∼ 100 nK and
a ∼ 2000a0 one obtains Nmax

υ ≃ 600, and adding more atoms
via photoassociation is prohibited by mechanisms similar to the
dipole blockade in Rydberg atoms.
From a different perspective, Massignan, Pethick, and

Smith (2005) investigated the density modifications that an
ion produces in a condensate. They calculated the excess atom
number ΔN ¼ 4π

R
Rþ dr r2½nðrÞ − nb�, which is the number

of atoms to be (hypothetically) added or subtracted from the
atomic ensemble due to the presence of the ion. Here nb is
the atomic density far away from the ion. In this model, the
condensate properties (e.g., density, chemical potential) far
from the ion remain unaltered by the ion presence. Based on a
thermodynamical approach, it was found that in the low
density limit ΔN ¼ ðm=μÞa=aaa, where a pseudopotential
treatment of the ion-atom interaction was assumed. This

ion

c

ion

Δε

(b)(a)

(c)

nc
c

+

FIG. 12. Diagrams of an atom capture by an ion. (a) The
spontaneous capture in level v is followed by phonon emission
(with corresponding rates). (b) The stimulated rate from the
condensate c to the bound level v may also produce heating, i.e.,
population of noncondensate atoms nc (c). From Côté, Kharch-
enko, and Lukin, 2002.
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simple relation is in good agreement with a Gross-Pitaevskii
mean-field calculation of the condensate density profile for
different bulk densities. It is interesting that ΔN can be either
positive or negative, depending upon the ion-atom phase shift
(i.e., short-range behavior). Typical numbers for jΔNj are of
the order of a few hundred, while the spatial perturbation of
the atom density around the ion is found to be on the
μm range. This implies that the presence of an ion indeed
yields appreciable and observable effects in the density
measurements.
Another type of polaron can arise if we consider the case of a

molecular ion instead of an atomic ion. In this case its rotational
degrees of freedom come into play. Such a problem in its
generality was investigated by Schmidt and Lemeshko (2015),
and a new kind of quasiparticle, named the angulon, was
identified. It is the rotational analog of the polaron, where the
rotational motion is dressed with many-body excitations of the
environment. Midya et al. (2016) theoretically demonstrated
that the signatures of the angulon can be observed in modern
experiments with a single CN− anion in a BEC of 87Rb or 84Sr
atoms. More precisely, they showed that the rotational Lamb
shift and the many-body-induced fine structure resulting from
the anisotropic impurity-BEC interaction are measurable.
The rotational Lamb shift, which is the rotational analog of
the effective mass of the polaron, is shown in Fig. 13. The
differential shift is defined as ΔRLS

L ¼ ½ELðnÞ − E0ðnÞ�−
½ELð0Þ − E0ð0Þ�, with ELðnÞ being the energy of the state of
total angular momentum L in the presence of a phonon bath in
the atomic BEC environment at density n. For both CN− þ Rb
and CN− þ Sr systems, the differential shift is on the order of
several kHz, reaching almost 100 kHz for the latter system at
typical condensate densities, all within current experimental
resolution.
Let us now turn to the case of one-dimensional systems. In

this case the existence of a true Bose-Einstein condensate is
forbidden and phase fluctuations play a more important role in
the system properties. In the presence of an ionic impurity, the
mean-field description of the static as well as dynamical

properties of the atomic system might be questionable and
Bogoliubov or perturbation theories are not accurate enough
(Massignan, Pethick, and Smith, 2005). One limiting case of a
one-dimensional system is the Tonks-Girardeau gas of impen-
etrable bosons. Behavior of the impurity embedded in the
Tonks gas was studied by Goold et al. (2010). They tackled
the problem by means of quantum defect theory and by
employing the Bose-Fermi mapping. The latter eliminates the
atom-atom interaction so that the problem reduces to finding
the single-particle states in the presence of the static ion-atom
potential. Because of the strong repulsion between the atoms,
three-body recombination can be neglected, since the density-
density correlation function is vanishing on the length scale of
the interparticle distance. As a consequence, the gas density
forN particles reduces to ρðxÞ ¼ P

N−1
n¼0 jψnðxÞj2, where ψnðxÞ

are the eigenfunctions of the single-particle Hamiltonian.
Interestingly, it was found that the presence of the ion
drastically perturbs the atom density by generating a bubble
in the trap center, where the ion is positioned, whose size is
of the order of 1 μm (Fig. 14), similar to the prediction by
Massignan, Pethick, and Smith (2005). Even though this
result might be counterintuitive at first glance, as the ion-atom
interaction is attractive at long distances, in this case no
relaxation to the molecular bound states is allowed because of
the strong atom-atom repulsion, so no buildup of atomic
density around the ion is expected.
In recent years, a significant effort has been undertaken

to simulate in a numerically efficient way the many-body
Schrödinger equation describing an ion in a one-dimensional
atomic cloud. The ground-state properties of ultracold bosons
in interaction with a static (i.e., tightly trapped) ion impurity
were investigated by Schurer, Schmelcher, and Negretti
(2014) by means of the multiconfigurational time-dependent
Hartree method for bosons (Alon, Streltsov, and Cederbaum,
2008; Cao et al., 2013; Krönke et al., 2013). A harmonically
trapped ensemble of atoms with a static ion was considered,
with the effective 1D Hamiltonian

FIG. 13. Differential Lamb shift (see text for definition) for CN−

in either a 87Rb (solid lines) or 84Sr (dashed lines) BEC as a
function of the atomic density n. The upper panel corresponds to
a total impurity-BEC angular momentum L ¼ 2, whereas the
lower panel corresponds to L ¼ 1. From Midya et al., 2016.
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FIG. 14. The single-particle densities of a Tonk-Girardeau gas
of 20 particles in the presence of a central ion for 135Baþ þ 87Rb
and 174Ybþ þ 87Rb systems with a typical trapping frequency
ω ¼ 70 Hz (thick black line). The short-range phases in each
case are chosen to be ϕe ¼ π=4 and ϕo ¼ −π=4. The thin red
lines in the plots represent the result of a pseudopotential
approximation for the ion, using a large value for the scattering
length. From Goold et al., 2010.
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Ĥ ¼
XN
j¼1

�
−

ℏ2

2ma

∂2

∂z2j þ V trapðzjÞ þ Vmod
ai ðzjÞ

�

þ g1D
X
j<n

δðzj − znÞ; ð56Þ

and with a fixed atom-atom interaction strength g1D corre-
sponding to a weakly interacting gas. Here Vmod

ai ðzjÞ denotes a
model potential for the ion-atom interaction Vmod

ai ðzjÞ →
−C4=z4j , and V trapðzjÞ ¼ 1

2
mωz2j is the harmonic trap with

the frequency ω (see Sec. III.B for a discussion on the 1D
conditions in ion-atom systems). It was found that the ion
drastically “slows down” the transition from the weakly
interacting regime to the Thomas-Fermi limit as the atom
number is increased. Such a behavior is owed to the fact that
the lowest energy states are bound and thus strongly localized
near the ion, and the trap eigenstates can be populated only
when the interaction energy is sufficiently large, i.e., N ≫ 1.
Furthermore, the presence of the ion strongly affects the
momentum distribution of the atoms. These effects become
even more pronounced when g1D is enhanced to attain the
Tonks-Girardeau limit. Interestingly, the presence of the ion
can influence the atomic gas in different ways depending on
the atom number parity. This effect can be understood as
follows: since the Hamiltonian (56) is symmetric and the atom
wave function has to vanish at the ion location (i.e., the
minimum of the trap center), the atomic density distribution
has to be symmetric. Thus, while for an even atom number the
density dip characteristic for a gas of impenetrable bosons is
observed (see Figs. 14 and 15, upper left panel), an additional
atom has to be equally distributed between the two sides of the
atomic cloud; see Fig. 15, upper right panel. Hence, while for
an even atom number the ion literally separates the atomic
cloud into two incoherent parts, the additional atom restores
the spatial coherence of the system. This effect is observable
in the free expansion of the atomic gas within the waveguide
after the sudden removal of the ion, as illustrated in Fig. 15
(bottom panels). For N ¼ 4 atoms, the humplike structure
disappears as time evolves, as the two sides of the clouds are
incoherent, whereas forN ¼ 5, the coherence between the two
halves is provided by the fifth atom such that the humplike
structure becomes more and more pronounced (see also the
case without the ion, middle panel of Fig. 15). Naturally, such
reliance on the atom parity can be more easily observed in
small atomic samples, i.e., a few tens of atoms, as for larger
atom numbers such humplike structures in the density will
likely be smeared over. Strongly interacting systems in
reduced dimensions, however, are better attained at low
densities and typical Tonks gas experiments can be prepared
with ∼10–50 atoms in a single wire (Pagano et al., 2014;
Meinert et al., 2017), thus enabling the observation of such
phenomena in the laboratory.
A recent many-body analysis including the ion motion in a

harmonic trap has shown that the formation of molecular ions
in one dimension crucially depends on the atom number
and interatomic interaction g1D (Schurer, Negretti, and
Schmelcher, 2017). Importantly, there exists a critical atom
number, for a fixed g1D, beyond which no atom can be bound
to the ion anymore. The effective mass of the ion depends

mostly on the number of bound atoms. In addition, an
effective trapping potential appears due to the presence of
unbound atoms surrounding the molecular ion. Moreover, the
actual many-body quantum state exhibits a shell-like struc-
ture, in which multiple bound and trapped states are occupied
(Gao, 2010).
So far we discussed mostly static properties and, in a

specific many-body study, showed that multiple scales
involved in the problem induce multimode features in the
system properties. The latter aspect becomes even more
pronounced in time-dependent processes. To be concrete,
let us consider an initially harmonically trapped condensate, in
which suddenly a single atom is ionized (Schurer, Negretti,
and Schmelcher, 2015). This quenching scenario could be
realized, for instance, by preparing an atom of a different
species in a tight dipole trap and then shining a laser field
interacting only with it (i.e., off resonant for the rest of the
cloud) in order to extract the valence electron. A sufficiently
deep optical trap would ensure that the formed ion is still
trapped. The time evolution for such a quench process is
illustrated in Fig. 16 for N ¼ 10 atoms and for a trap length of
R⋆=

ffiffiffi
8

p
. As can be seen, for short times the sudden generation

of the ion transfers most of the atoms into the bound states of
the ion-atom polarization potential. The remaining atoms are

FIG. 15. Upper panels: Normalized atomic density profiles
for different values of the atom-atom interaction strength
g1D=E⋆R⋆ ¼ 10, 40, and 160 (solid, dashed, and dotted lines)
with the static ion located in the trap center. In addition, the
density profile of the Tonk-Girardeau (TG) gas as a gray shaded
area is shown. Note that we show only the densities along the
positive semiaxis, because of the symmetry of the ground state.
Middle panels: Free expansion in the waveguide for the TG gas in
a harmonic trap (i.e., without ion). Bottom panels: Free expansion
in the waveguide for the TG gas after the sudden removal of the
ion at time t ¼ 0. In all panels the units of the length and energy
scales are calculated with respect to the atom mass, namely,
R⋆ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αe2ma=ℏ2

p
and E⋆ ¼ ℏ2=2maðR⋆Þ2, and the trap length is

R⋆=
ffiffiffi
8

p
. Adapted from Schurer, Schmelcher, and Negretti, 2014.
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ejected into the outer regions of the harmonic trap, and then
(at t ≈ 0.2ℏ=E⋆) reflected back to the trap center because of
the confinement. In addition to this, there is another faster
oscillation in the region of the atoms captured by the ion
(holes in Fig. 16 at z ≈�R⋆=2), which shows a collapse and
revival type behavior. A detailed analysis reveals that such a
behavior is connected to the loss and gain of spatial coherence
between the inner and outer density fractions. This demon-
strates that the interplay between different energy and length
scales provides a rather rich correlated dynamics.
The discussed instances of an ion immersed in a structured

quantum bath such as the one provided by a degenerate atomic
quantum gas illustrate how such a compound system can shed
light on the general impurity problem as well as improve
our understanding of open quantum systems. A number of
theoretical and experimental studies can be foreseen in the
near future. From the point of view of quantum engineering,
the influence of the quantum bath on the internal and motional
coherence of the ion should be investigated. Another possible
direction is to engineer mediated interactions between ionic
impurities in the quantum gas. Finally, one may ask whether
the ion can be exploited for sensing the properties of the bath,
e.g., its temperature or magnetization (see also Sec. V.D).
Given the exquisite control and sensitivity of the ion motion
against perturbations, one could envisage that global proper-
ties of the bath can be inferred by accurate measurements of
the ion trajectory.

III. CONTROLLING COLLISIONS

In this section we discuss the prospects for controlling the
collisional properties of ion-atom systems. We first focus on
Feshbach resonances, which can be used to tune the inter-
action strength once the s-wave limit is reached. Then we
discuss the role of external confinement, in particular, trap-
and confinement-induced resonances.

A. Magnetically tunable Feshbach resonances

Magnetic Feshbach resonances are one of the crucial tools
available for controlling the interactions of ultracold atoms
(Chin et al., 2010). A Feshbach resonance is a generic
phenomenon resulting from coupling of the scattering state
to a bound state in a closed channel. The position of this
bound state relative to the threshold can be controlled if
the channel states have different magnetic moments. The

coupling mechanism usually comes from the interaction
between hyperfine structure states. More exotic resonances
resulting from, e.g., weak electronic spin interaction or from
interaction-induced variation of the hyperfine coupling have
generally a much smaller width Δ as defined later.
Resonances manifest themselves by the divergence of the

s-wave scattering length described by (Chin et al., 2010)

aðBÞ ¼ abg

�
1 −

Δ
B − Bres

�
; ð57Þ

where Δ is the resonance width, abg is the background
scattering length, and Bres is the resonance position.
Controlling the magnetic field strength allows then for tuning
aðBÞ. For short-range interactions at low collision energies,
the scattering length is the most important quantity character-
izing the interaction, which makes the resonance extremely
useful.
Feshbach resonances can be expected to occur also in ion-

atom systems, with no fundamental differences from neutral
atoms. However, the relatively long-range nature of the
interaction results in much smaller characteristic energy
scales. While atomic scattering is dominated by the s wave
already at mK temperatures, for ion-atom systems the s-wave
regime is typically reached at sub-μK energies, depending on
the reduced mass. In current setups based on Paul traps
typically tens of partial waves contribute to the scattering
cross sections and resonant features are washed out.
Observation of ion-atom Feshbach resonances thus still
represents a major experimental challenge.
From the theoretical side the most difficult task is to predict

the positions of the resonances. This requires the knowledge
of the scattering lengths of different channels, which cannot be
accurately calculated without additional a priori knowledge.
However, it is possible to obtain a lot of general properties of
specific systems with just the knowledge about the long-range
interaction and hyperfine structure.
Two basic ways of studying Feshbach resonances include a

numerical coupled-channel calculation and a quantum defect
treatment based on the frame transformation concept. In the
latter method one parametrizes the problem at short range with
scattering lengths belonging to different hyperfine states in the
molecular basis (the one corresponding to the total nuclear
and electronic angular momentum), where the quantum defect
matrix YIS is diagonal (see Sec. II.D). The transformation

FIG. 16. Time evolution of the density for N ¼ 10 atoms after the sudden creation of a tightly trapped ion in the center of the atom trap
(ℏ=E⋆ ¼ 0.39 ms for 87Rb atoms). Adapted from Schurer, Negretti, and Schmelcher, 2015.
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back to the asymptotic scattering channels reads
Y ¼ ZðBÞUYISU†Z†ðBÞ. Here U is the frame transformation
between the molecular and asymptotic long-range basis
and Z is the transformation to magnetic-field-dressed states
(Idziaszek et al., 2011), which for a single valence electron
(alkali atoms) is described by the Breit-Rabi formula.
Let us consider as an example the collision between an

alkaline earth ion with no nuclear spin, such as 40Caþ, with an
alkali atom such as 87Rb. This configuration is currently the
most popular experimental choice. The ionic Zeeman states
are jfi ¼ 1=2; mfi ¼ �1=2i, while for the atom we have a
hyperfine structure with possible fa ¼ 1 and 2. We neglect
weak couplings between different partial waves so that the
total angular momentum projection MF is conserved
(F ¼ fi þ fa). In the molecular basis the proper quantum
numbers are I ¼ ii þ ia and S ¼ si þ sa. As si ¼ sa ¼ 1=2,
the channels can be divided into singlet (S ¼ 0) and triplet
(S ¼ 1) ones. The quantum defect matrix is diagonal in the
molecular basis, while in the asymptotic channel representa-
tion the couplings between the channels depend on the
parameter 1=ac ¼ 1=as − 1=at, where as is the singlet and
at the triplet scattering length. We notice that for similar
values of the two scattering lengths the couplings will be weak
and the resulting resonances should be narrow. It is possible
to manipulate the density of resonances to some extent by
selecting different hyperfine levels or switching between
isotopes.
Numerical calculations of Feshbach resonance spectra were

performed by Idziaszek et al. (2011), Tomza (2015), Tomza,
Koch, and Moszynski (2015), and Gacesa and Côté (2017) for
a number of ion-atom systems including Ybþ þ Li, which is
the most promising in this respect from the experimental point
of view due to the smallest reduced mass. Feshbach reso-
nances were also investigated for collisions involving Cr
atoms. Results are presented in Fig. 17. As the values of the
relevant scattering lengths could not be calculated, these
calculations were parametrized by changing the values of
scattering lengths associated with different electronic sym-
metries. This can be done by scaling the potential energy
curves. The calculations took into account the full structure of
short-range couplings, revealing the presence of narrow
resonances originating from the hyperfine interaction in the
Cr atom in addition to broad resonances coming from the
hyperfine structure of the ions, which have a much larger
hyperfine coupling constant than Cr.
At finite temperatures one should include contributions

from higher partial waves and it is convenient to study the total
collision rate constants instead of the scattering length.
Already at μK temperatures one can notice a much higher
density of narrow resonances with partial wave l up to around
10. This makes the resonance spectrum much harder to
interpret and suggests that in current setups it is not possible
to efficiently control the interactions. On the other hand,
charge-transfer processes are dominated by low-l contribu-
tions even at relatively high energies due to the necessary
tunneling through the centrifugal barrier, which is exponen-
tially suppressed. This makes them potentially promising for
measuring the values of singlet and triplet scattering lengths
experimentally. An exemplary dependence of collision rate

constants on the magnetic field at finite temperature is shown
in Fig. 18 where predictions of the MQDT model assuming
the same short-range phase for each partial wave are compared
to numerical calculations performed for the Caþ þ Na system.
As shown, Feshbach resonances can enhance the rate con-
stants by several orders of magnitude. We note that for l ¼ 4

there is a small discrepancy between the two models (black
arrow), indicating that angular momentum-dependent correc-
tions to the quantum defect matrix are needed to fully
reproduce the spectrum.
In all of these considerations we assumed that the collision

partners are not subject to any external potential. In realistic
experimental conditions the ion is placed in a tight external
trapping potential, which can contain time-dependent terms
when using the Paul trap. This introduces coupling between
the center of mass and relative motion and modifies the
asymptotic behavior of the wave function. This can strongly
affect the properties of resonances.
An additional effect which has to be considered is the

coupling of the ion charge to the magnetic field. This leads to
quantized cyclotron orbits for the ion movement, which can be
neglected only if the orbit radius is much smaller than R⋆. This
issue was investigated by Simoni and Launay (2011). As the
ion motion is confined in directions perpendicular to the
magnetic field axis, the problem qualitatively resembles quasi-
1D scattering. In the low field limit the effective confinement
is weak and the scattering can be well described by the energy-
dependent pseudopotential. However, for strong magnetic
fields the effective 1D coupling constant exhibits multiple

FIG. 17. The s-wave scattering length as a function of the
magnetic field for collisions of a Cr atom with a (a) Srþ, (b) Baþ,
and (c) Ybþ ion, obtained from coupled-channel calculations.
Typical scattering lengths of 0.1R⋆, R⋆, and 2R⋆ for the X6Σþ

electronic state and −0.1R⋆, −R⋆, and −2R⋆ for the a8Σþ
electronic state are assumed, respectively. Adapted from Tomza,
2015.
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resonances with contributions from many partial waves. This
should be included in the interpretation of future experimental
results performed at high magnetic fields.

B. Collisions in traps

As discussed in the previous section, magnetic Feshbach
resonances provide a unique tool to control the coupling
between a scattering and a molecular state. This controllability
can also be attained by manipulating the external confinement
of both the atom and the ion. For instance, by controlling the
separation between the traps of the two interacting particles,
trap-induced shape resonances (TIR) between the molecular
bound states and the trap-extended states can be observed
(Stock, Deutsch, and Bolda, 2003). In reduced-dimensional
setups, where the confinement in one or two spatial directions
is sufficiently tight, the effective scattering amplitude exhibits
so-called confinement-induced resonances (CIR) (Olshanii,
1998). Such types of resonances have also been predicted for
ion-atom systems (Idziaszek, Calarco, and Zoller, 2007;
Melezhik and Negretti, 2016).
We begin the discussion with the TIRs and consider an ion-

atom system that is described by the Hamiltonian

Ĥ ¼
X
ν¼i;a

�
p̂2
ν

2mν
þ 1

2
mνω

2
νðzν − dνÞ2 þ

1

2
mνω

2⊥νρ
2
ν

�

þ Vðjr̂i − r̂ajÞ: ð58Þ

Here the label i (a) refers to the ion (atom), respectively, dν
denotes the positions of the centers of atom and ion traps,
ρ2 ¼ x2 þ y2, and VðRÞ denotes the ion-atom interaction
potential. The trapping potentials are axially symmetric and
displaced along the z axis. The coexistence of radio-frequency
(rf) and dipole traps in the same spatial region is nontrivial and
crucially depends on the separation of time scales of the rf and
laser fields (Idziaszek, Calarco, and Zoller, 2007).
The short-distance behavior of the wave function can be

described, e.g., in the spirit of the quantum defect theory (see
Sec. II.D). At distances R ≪ R⋆ the relative and center-of-
mass (c.m.) degrees of freedom are decoupled, and the relative
motion is governed by the Hamiltonian Ĥ0 ¼ p̂2=2μþ VðRÞ,
since for R ≪ R⋆ the interaction potential is much larger than
typical trapping potentials and heights of the angular momen-
tum barrier. The short-distance behavior of the radial wave
function reads

RlðR; EÞ ∼ sin ðR⋆=Rþ φlðEÞÞ; R0 ≪ R ≪
ffiffiffiffiffiffiffiffiffiffiffi
R⋆=k

p
;

ð59Þ

where R0 marks the distance at which the interaction potential
deviates from the asymptotic long-range 1=R4 behavior and k
is the wave vector related to the asymptotic kinetic energy,
defined in terms of the total energy as E ¼ ℏ2k2=ð2μÞ, and
φlðEÞ are quantum defect parameters (i.e., short-range
phases), which we assume to be independent of the energy
and angular momentum, i.e., φlðEÞ≡ φ. Hence, in the
numerical calculations we can replace VðRÞ by its asymptotic
1=R4 behavior and impose on the wave function the boundary
condition stated by Eq. (59) with the single parameter φ.
An example of the energy spectrum of the Hamiltonian (58)

as a function of the distance between the traps d ¼ jdi − daj is
shown in Fig. 19 with ωi ¼ ωa ¼ ω. In this case the c.m. and
relative motion can be separated, and therefore we can focus
on the relative motion of the two particles only. At d ¼ 0 the
angular momentum l is a good quantum number and the states
have definite angular symmetry, which is depicted by the
appropriate symbols in Fig. 19. At intermediate distances, the
energy curves exhibit avoided or diabatic crossings, depend-
ing on the symmetry of eigenstates and on the strength of the
coupling term in the Hamiltonian. In the ion-atom system,
avoided crossings can be attributed to resonances between
molecular and vibrational states that appear when the energy
of a vibrational level coincides with the energy of a molecular
state shifted by the external trapping. The latter, to a good
approximation, is given by μω2d2=2. This behavior can be
explained by noting that the bound states jΨmoli are localized
around R ¼ 0, and thus

hΨmolðdÞjĤrelðdÞjΨmolðdÞi ≈ Eb þ 1
2
μω2d2.

Here Eb is the binding energy at d ¼ 0 and Ĥrel is the relative-
motion part of the Hamiltonian. The location of the avoided
crossing depends on the short-range phases.
In the general case, when the trapping frequencies for the

atom and ion are not equal, the relative and c.m. degrees of
freedom are coupled and the energy spectrum exhibits a richer

FIG. 18. Magnetic field dependence of the elastic and reactive
(radiative charge exchange and association) collision rate con-
stants for the Caþ þ Na system calculated with MQDTand close-
coupled model with the same scattering lengths at collision
energy E=kB ¼ 1 μK. Scattering lengths of R⋆ and −R⋆ are
assumed for the X1Σþ and a1Σþ electronic states, respectively.
From Idziaszek et al., 2011.
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structure. This is illustrated in Fig. 20, but in one dimension
(1D), showing the adiabatic energy levels as a function of d for
some example parameters: ωi ¼ 5.5ωa and la ¼ 0.9R⋆. This
choice corresponds to the interaction of 40Caþ and 87Rb in the
traps with ωa ¼ 2π × 10 kHz and ωi ¼ 2π × 55 kHz. The
figure indicates the presence of several avoided crossings
between vibrational and molecular states, which are a mani-
festation of TIRs. In comparison to the case of identical
trapping frequencies, we observe that the molecular part of the
energy spectrum contains states with different numbers of
excitations in the c.m. degree of freedom. They can be easily
identified at d ¼ 0, when the molecular levels are then equally
separated by ℏωc.m. with ω2

c.m. ¼ ðmaω
2
a þmiω

2
i Þ=M. The

arrows on the right-hand side of Fig. 20 indicate the

asymptotic states for large separations, which can be labeled
by the number of excitation quanta for the atom and ion trap,
respectively.
Let us now discuss the regime of quasi-one-dimensional

dynamics, where the transverse confinement for both the atom
and the ion is much stronger than the confinement in the
longitudinal direction. In such a case, for energies smaller than
the excitation energy in the transverse direction, the motion
can be effectively assumed to be frozen to the ground state of
the transverse trap. Nevertheless, the transverse motion plays
an important role at short distances, since the true ion-atom
interaction is of a three-dimensional nature. For simplicity,
hereafter we assume ω⊥i ¼ ω⊥a ¼ ω⊥, although TIRs and
CIRs appear also for different trapping frequencies. At large
distances, the total wave function of the relative motion can be
decomposed into a product of longitudinal and transverse
components, enabling one to obtain an effective 1D
Hamiltonian that reads

Ĥ1D¼
X
ν¼i;a

�
p̂2
ν

2mν
þ1

2
mνω

2
νðzν−dνÞ2

�
þV1Dðjzi−zajÞ; ð60Þ

with

V1Dðjzi − zajÞ ¼
Z Z

dρidρajψ0ðρi; ρaÞj2Vðjri − rajÞ: ð61Þ

Here ψ0ðρi; ρaÞ is the (Gaussian) ion-atom wave function of
the transverse harmonic confinement. The asymptotic behav-
ior of the interaction for jzj much larger than the trap length
scales is V1DðjzjÞ ¼ −C4=z4.
In one dimension, the wave function can be split into the

even and odd parts, similarly to the partial wave expansion in
3D (Olshanii, 1998), which obey the following boundary
conditions:

Ψe
relðz; kÞ ∼ jzj sin½R⋆=jzj þ φeðkÞ�; z ≪

ffiffiffiffiffiffiffiffiffiffiffi
R⋆=k

p
;

Ψo
relðz; kÞ ∼ z sin½R⋆=jzj þ φoðkÞ�; z ≪

ffiffiffiffiffiffiffiffiffiffiffi
R⋆=k

p
: ð62Þ

Here the labels e and o indicate the even and odd solutions of
the Schrödinger equation, respectively. Thus, in quasi-1D ion-
atom systems two quantum defect parameters are needed: the
even φeðkÞ and the odd φoðkÞ short-range phases. This
distinction is due to the fact that the general solution for
two distinguishable particles can be any superposition of even
and odd functions, contrarily to indistinguishable particles for
which parity has to be conserved. The relationship between
the short-range phases φe;o and the three-dimensional short-
range phase φ can be found numerically (Idziaszek, Calarco,
and Zoller, 2007). Figure 21 shows an example of the
dependence of φe and φo on φ for a⊥ ¼ R⋆. It compares
the results of numerical calculations with predictions based on
the pseudopotential method. In the regime a⊥ ≪ R⋆ (strong
ion-atom intercation or tight transverse confinement), where
the pseudopotential approach is not applicable at all, the short-
range phases φe;o vary even more rapidly as a function of φ
(Idziaszek, Calarco, and Zoller, 2007), indicating the pos-
sibility of the occurrence of a CIR.

FIG. 19. Energy spectrum of the relative motion for an atom and
an ion confined in identical spherically symmetric harmonic traps
with frequency ω vs the distance d between traps, calculated for
φ ¼ −π=4, and R⋆ ¼ 3.48aHO, where aHO ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=μω
p

. The blue
dashed line shows the approximate dependence of the molecular
state energy on d, while symbols at d ¼ 0 depict the angular
momentum of the molecular states. From Idziaszek, Calarco, and
Zoller, 2007.

FIG. 20. Energy spectrum for an atom and an ion confined in
harmonic traps with ωi ¼ 5.5ωa as a function of the distance d.
Calculations are performed for φe ¼ −π=4, φo ¼ π=4, and
la ¼ 0.9R⋆. From Idziaszek, Calarco, and Zoller, 2007.
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Confinement-induced resonances have been proven to
be an important tool to control the interaction in ultra-
cold ensembles in reduced spatial dimensions. A similar
controllability can be expected in ion-atom systems as well.
Melezhik and Negretti (2016) studied this problem within the
static ion approximation and solved numerically the 3D time-
independent Schrödinger equation

�
−

ℏ2

2ma
∇2

R þma

2
ω2⊥ρ2 þ

C12

R12
−
C4

R4

�
ψðrÞ ¼ EψðrÞ: ð63Þ

Here the static ion is located at ri ¼ 0 and the short-range
repulsive term C12=R12 has been used to simplify the short-
range dynamics while maintaining a reasonable number of
bound states. The solution has been obtained with the
following boundary condition for z → �∞:

ψðz; ρÞ ¼ ½expðikzÞ þ f�ðk; a⊥; a3DÞ expðikjzjÞ�φ0ðρÞ; ð64Þ

where in the transverse direction the atomic wave function has
been assumed to be asymptotically in the ground state φ0ðρÞ
of the two-dimensional harmonic oscillator. Here f� denotes
the forward and backward scattering amplitudes, and
r≡ ðx; y; zÞ, R ¼ jrj, and ρ ¼ ðx; yÞ.
In the framework of the outlined formalism, two opposite

regimes were investigated by Melezhik and Negretti (2016):
the long wavelength limit, where R⋆ ≪ a⊥, and the limit
R⋆ ≳ a⊥. In the former case, it was found that the pseudo-
potential approximation with energy-dependent scattering
lengths accurately describes the position of the CIR and that
in the zero-energy limit the atom-atom resonance condition
a⊥=a3D ¼ 1.4603… is retrieved. For moderate energies (a
few nK), the position of the CIR is well described by the
semianalytical formula

a⊥
a3DðkÞ

¼ 1.4603þ Δ
�
R⋆
a⊥

�
− 0.6531ða⊥kÞ2

¼ 1.4603þ Δ
�
R⋆
a⊥

�
− 0.3266

�
ma

μ

��
a⊥
R⋆

�
2
�
Ek
E�

�
:

ð65Þ

Here ΔðR⋆=a⊥Þ denotes the shift of the CIR from the zero-
energy value, and Ek denotes the longitudinal collision energy
of the atom. Figure 22 displays the range of applicability of
Eq. (65) for the Ybþ þ Li ion-atom pair. We note that the
case R⋆=a⊥ ¼ 0.447 (ω⊥ ≃ 2π × 71 kHz) already falls into
the region of experimentally reachable values of atom traps
(Cetina, Grier, and Vuletic, 2012; Härter and Hecker
Denschlag, 2014). This demonstrates that already moderate
trapping frequencies allow the exploration of a broad range of
values of R⋆=a⊥, which is not the case for atom-atom
collisions in a waveguide.
In the limit R⋆ ≳ a⊥, i.e., when the effective spatial range

of the ion-atom interaction is comparable or larger than the
transverse width of the atom waveguide, the pseudopotential
approximation cannot be applied. Even though in this limit
semianalytical expressions for the CIR position are not
derivable, an interesting “isotopelike” effect, i.e., a strong
dependence of the CIR position on the ratio R⋆=a⊥ (i.e., on
the atomic mass), can be potentially observed in experiments.
In Fig. 23, such a reliance is shown in the zero-energy limit,
where the CIR position for different ion-atom pairs in different
regions of the ratio R⋆=a⊥ (shaded areas) is illustrated. For
instance, for a⊥ ≃ R⋆ one needs ω⊥ ¼ 2π × 2.2 kHz for
the ion-atom pair 138Baþ þ 87Rb, while for 171Ybþ þ 23Na
we have ω⊥ ¼ 2π × 30 kHz. Hence, compared to atom-atom

FIG. 21. Even and odd short-range phases φe and φo calculated
for a⊥ ¼ R⋆. Numerical results (solid red lines) are compared
with predictions of the model replacing the ion-atom interaction
with the energy-dependent pseudopotential. Adapted from
Idziaszek, Calarco, and Zoller, 2007.

FIG. 22. Ratio a⊥=a3DðEkÞ calculated at the location of the
ion-atom CIR position as a function of the longitudinal
collision energy Ek for three different values of the ratio
R⋆=a⊥ for the ion-atom pair 171Ybþ þ 6Li. The circles
represent the calculated values of a⊥=a3DðkÞ via the integration
of Eq. (63) with the boundary condition (64). The solid curves
correspond to a⊥=a3DðkÞ ¼ 1.4603 − 0.6531ðma=μÞðEk=ℏω⊥Þ
at R⋆=a⊥ ¼ 0.025, where the effective-range approximation
for the energy-dependent scattering length a3DðkÞ has been
applied, and Eq. (65) at higher values of R⋆=a⊥. From Melezhik
and Negretti, 2016.
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CIRs, in ion-atom systems one has more flexibility in the
tunability of the ion-atom interaction. Besides, the study
indicates that the CIR width increases by enhancing the ratio
R⋆=a⊥. This effect is also persistent at finite collision energies
(Melezhik and Negretti, 2016).

IV. EXPERIMENTAL REALIZATIONS OF HYBRID
SYSTEMS

In this section, we describe the experimental techniques
used to create and study ion-atom systems, their advantages,
and shortcomings. In particular, we discuss in detail the
micromotion of charged particles in time-dependent potentials
and its consequences, including the limits on sympathetic
cooling of ions and nonthermal energy distributions. We also
discuss some of the schemes that have been proposed or are
currently pursued to avoid the micromotion problem.

A. Basic experimental techniques

Ions are typically created by isotope-selective photoioni-
zation of atoms originating from an atomic oven placed some
distance away from the trap and subsequently Doppler cooled
to the center of the trap. When more than one ion is loaded into
the trap, the ions crystallize to form linear strings, planar
or even three-dimensional structures (Birkl, Kassner, and
Walther, 1992). By shuttering the photoionization beam while
observing the ion fluorescence signal, any desired number of
ions can be loaded.
The earliest experiments combining cold trapped atoms and

ions employed Paul traps in combination with magneto-
optical trapping of atoms (Smith, Makarov, and Lin, 2005;
Grier et al., 2009; Hall et al., 2011; Rellergert et al., 2011;
Ravi et al., 2012a). With such experimental setups, temper-
atures around the Doppler limit for the atoms (several 100 μK)
are within reach. To go to lower atomic temperatures, more

elaborate subsequent experimental techniques are needed such
as evaporative cooling and magnetic or optical trapping of
atoms. Combining the Paul trap with ultracold atom technol-
ogy poses particular challenges. For instance, optical trapping
requires optical access for high power lasers that may damage
the ion trap. Magnetic trapping, on the other hand, requires
nearby electromagnets capable of supplying sufficient mag-
netic field gradients for trapping atoms. The radio-frequency
Paul trapping field may also cause atomic spin flips, leading to
losses. Since the initial magneto-optical trap is loaded from an
atomic beam or an otherwise increased background pressure
of atoms, care needs to be taken in protecting the electrodes of
the ion trap from contamination with atoms. Although the
atoms used are generally conducting, oxidation can occur over
long periods in the vacuum system and charge contamination
or the formation of dipoles on the electrode’s surface may
compromise the ionic trapping field (Brownnutt et al., 2015).
For this reason the atomic cloud is sometimes prepared some
distance away from the ion trap and subsequently transported
to the ions by either magnetic (Zipkes, Palzer, Sias, and Köhl,
2010) or optical (Schmid et al., 2012; Haze et al., 2013; Meir
et al., 2016) fields. An example of such a setup, from the
Mukaiyama group, is presented in Fig. 24.
Ions are generally detected using fluorescence imaging by

collecting light on either a photomultiplier tube or a CCD
camera. Since the ions strongly repel each other via the
Coulomb force, it is possible to resolve individual ions in most
experiments, with typical inter-ion distances lying in the
1–10 μm range (James, 1998). The internal atomic structure
of many of the used ion species also allows state detection
using fluorescence imaging. Typically, one or more states
correspond to a bright or fluorescing ion, while other states
correspond to no detected photons (dark ions). Subsequent
optical pumping to the bright states allows for distinguishing
dark ions from impurity ions or reaction products that are
always dark. Ion loss can be detected by structural changes in
the ion crystal. Atomic ensembles can be detected using
absorption imaging, which gives access to the atom number
and density, as well as the atomic temperature via time-of-
flight analysis after switching off the atom trap. In contrast to
ion imaging, atom imaging typically leads to atom loss, such
that a new atomic ensemble has to be prepared after detection.
Novel tools from quantum information science also allow

for detecting quantities related to the motion of the ions
(Leibfried et al., 2003). For instance, it is possible to map
average numbers of motional quanta onto the internal state of
the ion, giving access to the ion’s temperature. In a recent
work this technique was even used to probe the distribution
of motional quanta corresponding to nonthermal states (Meir
et al., 2016) for ultracold ion-atom mixtures. At higher
temperatures, ion-photon scattering rates give information
about ionic energies during Doppler recooling after interacting
with atomic ensembles (Wesenberg et al., 2007; Zipkes,
Palzer, Sias, and Köhl, 2010; Meir et al., 2016). Recently,
this technique was extended to much larger temperatures,
allowing, e.g., measuring large energy transfers after elec-
tronic state quenching in collisions between ions and atoms
(Meir et al., 2017; Sikorsky et al., 2017).
Since the atomic traps are much less deep than ion traps, it

can happen that collisions between atoms and energetic ions

FIG. 23. Ratio a⊥=a3D in which the CIR occurs as a function of
R⋆=a⊥ calculated for different ion-atom pairs in the zero-energy
limit Ek=E⋆ ¼ 10−6. Shaded areas indicate the frequency range
ω⊥ ¼ 2π × ð10–100Þ kHz of the atomic transverse trap for each
of the ion-atom pairs. Since R⋆ relies on the reduced ion-atom
mass as well as the trap width a⊥, the frequency ranges (i.e., the
shaded areas) depend on the specific pair, too. Adapted from
Melezhik and Negretti, 2016.
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lead to atom loss (Zipkes, Palzer, Sias, and Köhl, 2010). This
effect has been used to detect the atomic density profile by
looking at atom loss induced by a trapped ion (Schmid, Härter,
and Hecker Denschlag, 2010). Atom loss can also be
employed to detect and minimize excess micromotion
(Schmid, Härter, and Hecker Denschlag, 2010; Zipkes,
Palzer, Ratschbacher, Sias, and Köhl, 2010; Zipkes, Palzer,
Sias, and Köhl, 2010; Härter, Krükow, Brunner, and Hecker
Denschlag, 2013; Mohammadi et al., 2019). Inelastic colli-
sions leading to ion loss due to association or charge transfer
can also be detected (Grier et al., 2009; Schmid, Härter, and
Hecker Denschlag, 2010; Zipkes, Palzer, Sias, and Köhl,
2010). The mass of reaction products may be obtained by ion
mass spectroscopy (Welling et al., 1998; Baba and Waki,
2001; Drewsen et al., 2004). Here the reaction product is
sympathetically cooled by co-trapped parent ions and the
mass is inferred by obtaining the mass-dependent trap
frequencies of ion crystals in the electric field of the Paul
trap. This is usually done by parametric excitation using an

oscillating electric field and observing changes in ion fluo-
rescence. State-dependent fluorescence imaging has been
used to detect spin relaxation of a single 171Ybþ ion in a
cloud of spin polarized Rb atoms (Ratschbacher et al., 2013).
These tools also allow one to infer the coherence time of the
ionic spin in the atomic bath using Ramsey experiments
(Ratschbacher et al., 2013).

B. Electrical ion trapping

A common method of trapping ions is using a linear Paul
trap (Paul, 1990; Leibfried et al., 2003). The Paul trap
employs an oscillating electric field and offers tight confine-
ment to ions such that they are well localized and can have
very long lifetimes in the trap. A linear Paul trap is generated
by the static and radio-frequency electric fields EPTðr; tÞ ¼
EsðrÞ þ Erfðr; tÞ with

Esðx; y; zÞ ¼ E0
s

�
x
2
;
y
2
;−z

�
;

Erfðx; y; z; tÞ ¼ E0
rf cosðΩrftÞðx;−y; 0Þ: ð66Þ

Here E0
s and E0

rf are the electric field gradients of the static and
radio-frequency fields, while Ωrf is the trap drive frequency.
Assuming an ion of mass mi and charge e we introduce the
stability parameters a ¼ 2eE0

s=miΩ2
rf and q ¼ 2eE0

rf=miΩ2
rf

and obtain the following classical equations of motion:

ẍðξÞ − ½aþ 2q cosð2ξÞ�xðξÞ ¼ 0;

ÿðξÞ − ½a − 2q cosð2ξÞ�yðξÞ ¼ 0;

̈zðξÞ þ 2azðξÞ ¼ 0; ð67Þ

with ξ ¼ Ωrft=2. The equations for the transverse motion take
the canonical form of Mathieu equations, which can be solved
via the Floquet theorem. This yields the following general
solutions for the coordinates to the lowest order in the stability
parameter q:

xðtÞ ≈ ½Cx cosðωxtÞ þ Sx sinðωxtÞ�
�
1þ q

2
cosðΩrftÞ

�
;

yðtÞ ≈ ½Cy cosðωytÞ þ Sy sinðωytÞ�
�
1 −

q
2
cosðΩrftÞ

�
;

zðtÞ ¼ ½Cz cosðωztÞ þ Sz sinðωztÞ�; ð68Þ

with the constants of integration denoted by Sj and Cj,
j ¼ fx; y; zg. The motion of the ion in the transverse x-y plane
is given by a slow secular motion of frequency

ωx;y ≈
Ωrf

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ q2=2

q
;

and a fast micromotion of frequency Ωrf. Stable ion trapping
requires q < 0.9 for a → 0, with typical experimental values
for q being 0.1–0.4 with a ≪ q. This means that the micro-
motion is generally a factor of 10–50 faster than the secular
motion and has an amplitude that is smaller than that of the
secular motion. The motion of the ion in the z direction is

FIG. 24. Schematic drawing of the experimental setup used by
Saito et al. (2017). The upper part shows the atom chamber,
whereas the lower part presents the ion chamber. 6Li atoms are
supplied from the right side of the atom chamber and are
decelerated by a Zeeman slower. First, 6Li atoms are trapped
by a conventional MOT, and then, they are trapped by an optical
dipole trap at the center of the atom chamber. The atoms are
transported to the position of the ion trap by moving one lens
placed on a translation stage. Caþ ions are trapped at the center of
the ion trap electrode placed inside the ion chamber. The 397-nm
cooling laser for the ions is incident along both the radial and the
axial directions of the ion trap, and the 866-nm repump laser is
incident along the axial direction. Fluorescence of the ions is
collected by an objective lens and detected by a photomultiplier
tube and an electron multiplying charge coupled device
(EMCCD) camera. The energy-level diagram of the 40Caþ ion
is shown in the inset. From Saito et al., 2017.
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purely harmonic since there is no radio-frequency field in this
direction. Additional voltages on the ion trap electrodes can
be used to break the symmetry of the electric fields. In this
case, stability parameters can be defined in all directions,
i.e., ax þ ay þ az ¼ 0 and qx þ qy þ qz ¼ 0 as described by
Leibfried et al. (2003).

C. Micromotion in ion-atom systems

1. Excess micromotion and its fundamental limits

Since the collision energy of atoms and ions is in most
experiments limited by the micromotion of the ions, it is
important to minimize its effects in order to achieve the lowest
temperatures in ion-atom systems. As can be seen from the
approximate solutions of the Mathieu equations (68), each
ionic orbit has associated with it intrinsic micromotion that
cannot be reduced by any experimental means for given
stability parameters q and a. However, experimental imper-
fections arise in a real Paul trap that can cause excess
micromotion. Here we review some of the techniques devel-
oped for detecting and minimizing this excess micromotion
(Berkeland et al., 1998).
The quantum limit.—Let us first examine the minimum

micromotion energy that we could hope to reach under perfect
experimental conditions, i.e., we consider only intrinsic
micromotion. The description of the ion trapped in the
time-dependent electric fields of the Paul trap in the previous
section was classical. In this case, an ion cooled to zero kinetic
energy would sit exactly in the center of the trap and all
micromotion would vanish. A quantum mechanical analysis
(Leibfried et al., 2003) shows that the dispersion of the ionic
wave packet leads to a minimum micromotion amplitude of
xmin
mm ¼ lhoq=2, corresponding to a “breathing” motion of the
ionic ground state with size lho ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mωx

p
, and similarly

for the y direction. The energy associated with this motion
amounts to an average kinetic energy of Emin

mm ¼
mΩ2

rfðxmin
mmÞ2=4. If we assume that the static stability parameter

a → 0, we have that ωx ≈ Ωrfq=
ffiffiffi
8

p
, such that Emin

mm ≈ ℏωx=4,
that is, the minimum micromotion kinetic energy is of the
same order as the zero-point energy of the trap. Obviously, the
present discussion is limited to small systems of trapped ions,
in which the ions are trapped in a position where the
oscillating electric fields vanish. The Coulomb repulsion
between the ions will prevent large ion densities from being
achieved and outer ions will have micromotion energies that
are much larger than this quantum limit. This is particularly
true for ion crystals that are two or three dimensional.
In-phase excess micromotion.—An important modification

to the Paul trap occurs when the static and radio-frequency
fields do not disappear at the same point (Berkeland et al.,
1998). An additional uncontrolled static field, for instance in
the x direction, Eemm ¼ ðEemm; 0; 0Þ, displaces the ion’s
equilibrium position by xemm ¼ eEemm=miω

2
x. In this situa-

tion, the ion undergoes excess micromotion of amplitude
remm ¼ qxemm=2 corresponding to an average kinetic energy
of Eemm ¼ miq2Ω2

rfx
2
emm=16. In a collision with an atom, this

kinetic energy can be transferred to the ion’s secular motion,
causing ion heating as described later. Additional static

electric fields can be applied to compensate the micromotion
in this situation, as described in the next section.
Axial micromotion.—It can also happen that qz ≠ 0 due to

asymmetries in the construction of the linear Paul trap. In this
case, it may happen that the ion cannot be trapped in the center
of the radio-frequency field in the z direction, leading to
axial micromotion of amplitude qzz0=2, with z0 the distance
from the center of the radio-frequency field. This micro-
motion also poses a challenge when working with linear
chains of ions. For instance, two ions sitting in the center
of a linear Paul trap will align along the z axis at a distance
lz ¼ �ðe2=2πϵ0miω

2
zÞ1=3=2 from the trap center, owing to

their Coulomb repulsion. This causes micromotion of ampli-
tude lzqz=2.
Asymmetries in the Paul trap geometry or electronics

caused by, e.g., inaccurate construction or by poor filtering
of the electrode feeds can lead to an oscillating homogeneous
field in the axial direction. In this case, there is no point along
the z axis where the oscillating field vanishes. This type of
micromotion may be compensated by feeding a radio-
frequency voltage with appropriate phase and amplitude to
one of the Paul trap end caps.
Out-of-phase excess micromotion.—Finally, excess micro-

motion can occur because the radio-frequency null is time
dependent. This originates from differences in impedance of
the electrodes and their electric connections to the rf source, or
from length differences in the wiring between the radio-
frequency electrodes. This type of micromotion, which is
sometimes called quadrature micromotion, leads to an addi-
tional oscillating electric field at the position of the ion of
magnitude (Berkeland et al., 1998)

Eqmm ¼ Eelectrodeð0Þ sinφac sinðΩrftÞ: ð69Þ

Here Eelectrodeð0Þ is the electric field amplitude at the ion’s
position due to the oscillating voltage on a single electrode and
φac is the phase difference between the two electrodes. This
leads to a micromotion amplitude of xqmm ¼ eEqmm sinφac=
mΩ2

rf . Since the voltages applied in most Paul traps are very
high, this type ofmicromotion can lead to large kinetic energies
in the ion, even for small phase differences φac.

2. Micromotion detection and compensation

Since attainable temperatures in hybrid ion-atom experi-
ments are usually limited by excess micromotion, it is of key
importance to be able to compensate it. The extent to which
the micromotion can be compensated depends on the accuracy
with which compensating electric fields can be applied to the
ion, on drifts due to thermal effects, and on the accuracy with
which the micromotion can be detected in an experiment.
Micromotion detection by monitoring ion positions.—

Radial excess micromotion induced by stray dc electric fields
shift the ions out of the node of the rf-quadrupole field. These
stray fields can be measured by monitoring the ion positions
with a camera while varying the radial confinement by tuning
the radio-frequency amplitude (Gloger et al., 2015). The ion’s
average position in the presence of a field Eemm is given by
xeq ¼ eEemm=mω2

x. In experiments where high-numerical
aperture imaging is possible, average ion positions can be
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distinguished at the ∼200 nm scale. Assuming 171Ybþ with
the lowest trap frequency of ωx ¼ 2π × 25 kHz, it would
allow for detecting and compensating stray electric fields
down to about Eemm ≤ 0.01 V=m, corresponding to a micro-
motion energy of ∼0.3 mK, if we assume Ωrf ¼ 2π × 2 MHz
and q ¼ 0.2.
We can improve on this method by using detection schemes

that probe the ion position but do not rely on the resolution of
the imaging system. This can be done, e.g., by monitoring the
fluorescence of the ion in an inhomogeneous laser field
(Berkeland et al., 1998), or by inducing a spatially dependent
ac Stark shift by a tightly focused laser beam to observe its
influence on the fluorescence (Huber et al., 2014). We can also
introduce an inhomogeneous magnetic field and probe the
transition frequency of two Zeeman or hyperfine states with
differential magnetic field susceptibilities as a function of the
radial confinement. For instance, consider two Zeeman states
with a transition frequency of ℏωtrans ¼ ℏω0 þ μBB0x, with ω0

the bare transition frequency, μB the Bohr magneton, B0 the
magnetic field gradient, and x the position of the ion. The
transition can be measured with an accuracy of∼2π × 100 Hz,
using, e.g., Ramsey spectroscopy. Assuming B0 ¼ 0.1 T=m,
which is not too demanding experimentally, this would allow
one to determine x down to about 70 nm and to compensate
the excess micromotion energy to about 40 μK by applying
external electric fields as described later.
Micromotion detection by monitoring spectral lines.—

A much employed technique to detect micromotion is by
observing the spectral composition of atomic transitions as a
result of the modulation of the excitation laser in the rest frame
of the ion. In the following, we follow the derivation of
Berkeland et al. (1998). Consider the electric field ELðtÞ of a
laser interacting with an ion undergoing excess micromotion.
In the ion’s rest frame, the electric field can be written as

ELðtÞ ¼ ReðE0eiðk·ðr0þremmÞ−iωLtÞÞ; ð70Þ

where k is the wave vector of the laser, r0 represents the
secular motion, and remm the excess micromotion, E0 is the
electric field amplitude of the laser and ωL its frequency. We
can rewrite Eq. (70) in terms of the Bessel functions JnðβÞ
(Berkeland et al., 1998):

ELðtÞ ¼ Re

�
E0eik·r0

X
n

JnðβÞeinðΩrf tþδþπ=2Þ−iωLt

�
; ð71Þ

where remm ¼ rk cosðΩtÞ þ r⊥ sinðΩtÞ and the modulation

index is β2 ¼ ðPnknr
k
nÞ2 þ ðPnknr

⊥
n Þ2. The phase difference

δ is given by tanðδþ π=2Þ ¼ P
nknr

⊥
n =

P
nknr

k
n.

From Eq. (71), we get the resonance condition ωL ¼ ω0þ
nΩrf , with ω0 the bare transition frequency. Therefore, the
absorption line acquires a set of sidebands at frequencies nΩ,
with integer n. From the relative strength of these sidebands
we can infer the modulation index β and thereby the amplitude
of the excess micromotion.
In the situation where the transition linewidth Γ0 is much

smaller than the trap drive frequency, Γ0 ≪ Ω, the sidebands
can be resolved and their relative strengths can be probed
immediately. The comparison in Rabi frequency between the

zero-order sideband carrier and the first-order sideband
carrier gives access to the modulation index Ω1=Ω2 ¼
J0ðβÞ=J1ðβÞ. Care needs to be taken to eliminate systematic
errors in this approach. Meir, Sikorsky et al. (2018) showed
that a source of such errors can be oscillating magnetic fields
at the position of the ion which are caused by induced rf
currents that modulate the transition frequency. In this case,
the apparent compensation electric field depends on the
magnetic susceptibility of the optical transition used.
Thermal motion of the ion may also cause systematic errors
as second-order coupling between inherent micromotion and
thermal harmonic motion sidebands can overlap with the
excess micromotion sidebands (Meir, Sikorsky et al., 2018).
In the limit whereΓ0 ≫ Ω, the sidebands cannot be resolved.

In this case, the excessmicromotion becomes apparent from the
line broadening of the transition. The spectral decomposition,
Eq. (71), can be convoluted with a spectral distribution
representing broadening due to, e.g., natural linewidth, mag-
netic fields, and atomic substructure, and it can be fit to the
observed spectrum. Obviously, for vanishingly small excess
micromotion, this method becomes unreliable. However, one
can artificially increase the excess micromotion by applying a
large offset field. Inverting the offset field allows accurate
determination of the zero crossing of the modulation index.
Alternatively—and more accurately—the fluorescence of the
ion interacting with a low-intensity laser beam, which is
modulated by the Doppler shift, can be correlated with the
trap drive frequency Ωrf. This method is known as the photon-
correlation method and has the advantage that it is sensitive to
both excess and quadrature micromotion as described in detail
by Berkeland et al. (1998).
Since the method previously described works only for

micromotion that is parallel to the wave vector of the laser,
each direction of micromotion can be independently mini-
mized by using three laser beams with projections onto three
independent directions. In case the compensating fields cannot
be applied in the same directions, iterations may be necessary
to accurately minimize micromotion in all directions.
Micromotion detection by motional excitation.—Excess

micromotion can also be detected by motional excitation of
the secular ion motion (Ibaraki, Tanaka, and Urabe, 2011;
Narayanan et al., 2011). If the ion is displaced by a stray
electric field Eemm, it will experience an oscillating field from
the radio-frequency electrodes. Introducing an oscillating field
on these electrodes, that is close to the secular frequency of
the ion motion, will result in motional excitation. Interplay
between this excitation and the cooling and detection laser
will result in a dip in ion fluorescence. If the ion is in the center
of the trap, no excitation can occur, since the oscillating field
vanishes such that the ion is compensated in that direction.
Micromotion detection by monitoring atom loss.—In an

ion-atom mixture, the atomic loss rate depends on the energy
of the trapped ion. This is because more energetic ion-atom
collisions result in a higher probability for an atom to
subsequently leave the shallow atom trap. Schmid, Härter,
and Hecker Denschlag (2010), Zipkes, Palzer, Ratschbacher,
Sias, and Köhl (2010), Zipkes, Palzer, Sias, and Köhl (2010),
and Härter, Krükow, Brunner, and Hecker Denschlag (2013)
used the observed atom loss to probe ionicmicromotion energy.
Offset fields were used to compensate this micromotion as
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described later. This type of micromotion detection has the
benefit that it also works for ions that do not allow for
fluorescence imaging, because they lack closed transitions
or only have transitions at inaccessible wavelengths.
Compensating micromotion by external electric fields.—

To compensate excess micromotion, usually Paul traps
are equipped with a number of electrodes for applying
compensating electric fields. The use of ultrastable voltage
sources and proper filtering prevents problems with drifting
micromotion compensation and ion heating. Since charge
distributions sticking to electrodes after oxidation can cause
time-varying stray fields, micromotion compensation has to
be repeated regularly. The precision with which excess
micromotion can be compensated varies between experimen-
tal realizations (Härter, Krükow, Brunner, and Hecker
Denschlag, 2013). Typically residual static electric fields
are in the range of about 1 V=m, with Härter, Krükow,
Brunner, and Hecker Denschlag (2013) quoting the value
of 0.02 V=m, corresponding to a residual excess micromotion
temperature of 0.5 μK for Rbþ. In these experiments, excess
micromotion sets the temperature scale in ion-atom inter-
actions, opening the way toward studying ion-atom mixtures
in the quantum regime. Compensating out-of-phase micro-
motion requires the application of time-dependent radio-
frequency offset fields with appropriate phase.
Preventing excess micromotion.—Although it should not

be recommended to rely on prevention alone, some care can
indeed be taken in reducing the amount of excess micro-
motion. In particular, axial and out-of-phase micromotion may
be mitigated by proper mechanical and electronic construc-
tion. For instance, care needs to be taken to see that the
electrodes of the Paul trap are exactly parallel and the
connectors to the radio-frequency electrodes are made of
equal length. Proper filtering and impedance tuning of the
electrodes is also useful. Stray fields due to charges sticking
on nearby nonconductive surfaces can be prevented by
avoiding the use of insulating materials close to the ions.
Unfortunately, many ion species require ultraviolet lasers for
cooling and detecting, which can easily extract electrons from
trapping electrodes. They are then carried around the Paul trap
due to the large electric fields present. Oxidized material on
electrode surfaces, for instance coming from atomic ovens
used to load ions or atoms, can also pose a problem as the
charges accumulate there. Heating up the ion trap permanently
or periodically can reduce their effects, as can smart design
of laser beam paths and ovens to prevent charge extraction
and contamination of surfaces. Useful information on the
prevention and drifts of stray electric fields was given by
Harlander et al. (2010) and Härter et al. (2014).

3. Effects of micromotion on hybrid ion-atom systems

At first sight it is somewhat surprising that a system of
ions trapped in a Paul trap does not thermalize with a buffer
gas. This was first addressed by Major and Dehmelt (1968) as
early as 1968. A useful way of shedding light on the problem
is by considering hard-sphere collisions in one dimension
between an ion and atoms that are stationary (i.e., assuming
classically zero atomic temperature). Assuming that there is
no excess micromotion, the ion follows an orbit xðtÞ given by

Eq. (68). At t ¼ tcol, a hard-sphere collision occurs with a
stationary atom such that the new position and velocity are
given by x0ðtcolÞ ¼ xðtcolÞ and v0ðtcolÞ ¼ AvðtcolÞ, with
A ¼ ðmi −maÞ=ðmi þmaÞ according to energy and momen-
tum conservation. Since we can write the velocity of the ion
as a sum of a secular and a micromotion part, vðtÞ ¼
vsecðtÞ þ vmmðtÞ, it is obvious that v0ðtÞ could have a higher
or lower secular velocity than vðtÞ depending on the value of
vmmðtcolÞ, i.e., heating or cooling can occur. Whether heating
or cooling is more likely on average depends solely on the
mass ratio via A in this simple model. One useful way to
picture the situation is that the collision with an atom disrupts
the micromotion of the ion, which transfers energy from the
micromotion to the secular motion.
Although this oversimplified model gives some intuition for

the underlying physics, a complete description of the problem
of a buffer gas interacting with ions trapped in a Paul trap has
proven to be remarkably complex. DeVoe (2009) considered
the case in which trapped ions were interacting with a buffer
gas of finite temperature via hard-sphere collisions and
calculated numerically that the ions should develop non-
Gaussian energy distributions with power-law tails after
undergoing hard-sphere collisions with the atoms. These
distributions, which are shown in Fig. 25, fit well to a
Tsallis distribution (Tsallis, 1988), which is a generalization
to the Maxwell-Boltzmann distribution. This long-tailed
energy distribution reaches temperatures that are much higher
than those of the buffer gas. DeVoe (2009) found that the mass
ratio parametrizes the deviation from the normal Maxwell-
Boltzmann distribution, with the smaller ion-atom mass ratios
corresponding more closely to normal thermal distributions.
Similar results were obtained by Zipkes et al. (2011), who
studied the kinematics of trapped ions for a buffer gas at T ¼ 0

FIG. 25. Normalized equilibrium energy distributions for differ-
ent mass ratios ξ ¼ ma=mi in a Paul trap. The buffer-gas cloud
distribution is given by a Gaussian of size σa ¼ R0=100 and
temperature of Ta ¼ 200 μK. Also shown is the energy distri-
bution in the Boltzmann regime (red curve) and the energy
distribution for ξ ¼ 34 (purple curve), according to the expres-
sions in Table V. The inset compares the exponents κ of the power
law in the energy distribution (as defined in Table V), for different
models. The condition κ ¼ −2 separates the regimes of stable
from unstable ion motion. From Höltkemeier et al., 2016a.
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in relation to an ion-atom mass ratio, a trap geometry, a
differential cross section, and a nonuniform neutral atom
density distribution and identified excess micromotion as the
main limit in attainable temperatures.
Chen, Sullivan, and Hudson (2014) developed an analytical

model that can predict the steady state and dynamics of the
kinetic energy of a single ion in the buffer gas as well as the
transition from sympathetic cooling to heating, and its
dependence on trap parameters and masses of the particles.
These results indicated that the observation of non-
Maxwellian statistics could indeed be attributed to random
heating collisions. Rouse and Willitsch (2017, 2018) derived
the analytical form of the ionic energy distribution showing
that it indeed follows a Tsallis distribution. Höltkemeier et al.
(2016a, 2016b) extended the considerations to the case of
higher-order radio-frequency traps and inhomogeneous buffer
gases. We discuss their results later.
In a remarkable experiment, Meir et al. (2016) and Meir,

Sikorsky et al. (2018) directly probed the energy distribution
of a trapped Srþ ion immersed in a cloud of Rb atoms at a
temperature of 5μK using methods developed for ion trap
quantum information processing (Leibfried et al., 2003). The
ion was prepared in the ground state of secular motion and all
excess micromotion energy was compensated to values below
0.5 mK. The ion was prepared in a pure electronic ground

state after interacting with the atoms for some time. A narrow
linewidth laser coupled this ground state to the metastable
D5=2 state, which resulted in Rabi oscillations. The Rabi
frequency Ωnx;ny;nz of these oscillations depends on the
amount of motional quanta nj present in the secular motion
of the ion in each direction j ¼ x, y, z (Meir et al., 2016):

Ωnx;ny;nz ¼ Ω0

Y
e−ηi=2Lniðη2i Þ; ð72Þ

with the Lamb-Dicke parameters ηj ¼ kjlhoj , and kj the wave

vectors of the light and lhoj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2miωj

p
the size of the ionic

ground-state wave packet in the direction j. The function
LnðxÞ is the Laguerre polynomial of degree n, and Ω0 is the
bare Rabi frequency. Thermal occupation of excited states of
the secular harmonic oscillator states results in mixing of
various frequency components in the Rabi oscillation leading
to damping. State-selective fluorescence detection allows one
to probe the Rabi oscillations. A maximum-likelihood fit of
the Rabi oscillations averaged over many experimental runs
allows one to identify the relative population of each of the
harmonic oscillator states. In this way, they were able to show
that indeed a Maxwell-Boltzmann distribution does not
describe the data as well as a Tsallis distribution, as shown
in Fig. 26.
The experiment of Meir et al. (2016) also sheds light on

another important question: what sets the energy scale in the
situation where there is no excess micromotion while the
buffer gas is close to T ¼ 0? Cetina, Grier, and Vuletic (2012)
considered the case of an ion that is cooled to the center of the
Paul trap and does not undergo micromotion classically. When
an atom with negligible initial temperature collides with this
ion, we would not expect much to happen when considering
classical hard-sphere collisions. However, Cetina, Grier, and
Vuletic (2012) discovered that the picture changes signifi-
cantly when it is taken into account that the ion-atom

TABLE V. Analytical expressions for the ion’s kinetic energy
distribution in three different regimes for a Paul trap as obtained
from fitting the numerical results shown in Fig. 25. From
Höltkemeier et al., 2016a.

Boltzmann regime (ξ ≪ ξcrit) PðEiÞ ∝ E3=2
i exp ð−Ei=kBTaÞ

Power-law regime (ξ ∼ ξcrit) PðEiÞ ∝
�
E3=2
i ; Ei ≪ kBTa

Eκ
i ; Ei ≫ kBTa

Localization regime (ξ ≫ ξcrit) PðEiÞ ∝ Eκ
i exp ð−Ei=E⋆
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FIG. 26. Carrier Rabi spectroscopy between the S1=2 ground state and the metastable D5=2 state in a Srþ ion. (a)–(f) Each graph
corresponds to a different interaction time between the ion and ultracold Rb atoms (0, 0.5, 2, 3.5, 5, 6.5 ms, respectively). The solid lines
indicate a fit using a Tsallis distribution, while the dashed lines show the fit of the data to a thermal distribution. (g) The ions temperature
(filled colored circles) as a function of the interaction time (top x axis) and the average number of Langevin collisions (bottom x axis).
Open circles come from a simulation that takes into account the polarization potential. Black dots are simulation results taking into
account only hard-sphere collisions. (h) Ion power-law parameter n, which measures to what thermal extent a distribution can be used.
The ion energy distribution starts with n ≫ 1, consistent with a Maxwell-Boltzman distribution, and converges to n ¼ 4.0ð2Þ after ∼10
collisions. For n > 10, thermal and Tsallis distributions are almost indistinguishable. From Meir et al., 2016.
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interaction is indeed of a long-range 1=R4 nature. As the atom
approaches the stationary ion, the ion starts to move at a
velocity that is no longer adiabatic with respect to the Paul
trap’s electric fields and is pulled away from the trap center. In
this situation, energy is transferred from the time-dependent
trapping fields into the ion-atom system and rapid heating
occurs. As before, it was found that the mass ratio ma ≪ mi
can be used to mitigate this heating effect. Meir et al. (2016)
recreated in an experiment the situation considered theoreti-
cally by Cetina, Grier, and Vuletic (2012). As the ion was
cooled to the ground state of motion in all directions and
micromotion was compensated close to the quantum limit, the
initial heating of the ion was caused by the long-range
character of the ion-atom interaction. The work by Cetina,
Grier, and Vuletic (2012) thus provides an important limita-
tion to achievable temperatures in sympathetic cooling of ions
by atoms. In Fig. 27, some of the ion-atom trajectories
calculated by Cetina, Grier, and Vuletic (2012) are shown.
In the presence of multiple trapped ions, one has to include

the inevitable micromotion-induced heating, as it is no longer
possible to keep all ions in the center of the trap. Indeed,
collisions among ions themselves in dense ion systems can
lead to heating in the presence of micromotion. Chen et al.
(2013) experimentally analyzed these effects by studying
174Ybþ ions that were heated due to micromotion interruption
during ion-ion collisions. The observed time evolution of the
ion temperature was compared to a theoretical model for ion-
ion heating which allowed them to directly measure the
Coulomb logarithm. This provides a simple analytical descrip-
tion of ion cloud density, temperature, and structural phase.
These results have been extended to the case where large ion
crystals were interacting with cold atoms by Schowalter et al.
(2016) in an experiment supported by molecular dynamics
simulations. Interestingly, a bifurcation of steady-state ion
energies has been found, showing that buffer-gas cooling has

strong limitations for larger ion crystals. Meir, Pinkas et al.
(2018) used a single-shot Doppler-cooling thermometry with
single-event and energy-mode resolution to study the sym-
pathetic cooling dynamics of an energetic ion immersed in an
ultracold bath of neutral atoms. They demonstrated the
capabilities of the new method to detect a single collision
and the direction of ion motion following this collision. They
used this capability to observe a deviation of the scattering
angle distribution from the Langevin model predictions
manifested by a forward-scattering peak. They also directly
observed the nonequilibrium dynamics of atom-ion collisions
in a Paul trap with single-collision resolution.

4. Quantum description of micromotion in ion-atom systems

Up until now, we discussed only the classical description
of micromotion in ion-atom systems. Leibfried et al. (2003)
provided a quantum description of single ions in Paul traps
and Nguyên et al. (2012) were the first to extend this
description to the situation where an atom was also present
based on Floquet theory. Next we give a brief description of
this procedure.
The Hamiltonian of an ion of massmi trapped in a Paul trap

with a trap drive frequency Ω and stability parameters q and a
is given by

HionðtÞ ¼
p2
i

2mi
þ 1

8
miΩ2z2i ½aþ 2q cosðΩtÞ�; ð73Þ

where we considered only one direction zi of motion with
momentum pi for simplicity. Following Cook, Shankland, and
Wells (1985) and Nguyên et al. (2012) we write the ion wave
function as

Ψðzi; tÞ ¼ exp

�
−

i
4ℏ

miqΩz2i sinðΩtÞ
�
wðzi; tÞ: ð74Þ

Using this ansatz in the Schrödinger equation, the following
effective Hamiltonian for the wave function wðzi; tÞ is
obtained:

HeffðtÞ ¼ Hsec þHmmðtÞ ¼
p2
i

2mi
þ 1

2
miω

2
i z

2
i þHmmðtÞ; ð75Þ

with the micromotion term given by

HmmðtÞ ¼ −mig2ω2
i z

2
i cosð2ΩtÞ − gωifzi; pig sinðΩtÞ: ð76Þ

Here g ¼ ½2ð1þ 2a=q2Þ�−1=2. Neglecting this micromotion
term forms the basis of the so-called secular approximation, in
which we are left with the Hamiltonian of a time-independent
harmonic oscillator with trap frequency

ωi ¼
Ω
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ q2

2

r
.

In case there is also an atom present described by the
Hamiltonian Ha, we can write the combined Hamiltonian as
Htot ¼ Hstatic þHmmðtÞ ¼ Ha þHsec þHai þHmmðtÞ, with
Hai the interaction term between the atoms and ions. The
static part of this Hamiltonian can be solved by transforming
to relative r and center-of-mass R ion-atom coordinates. The

FIG. 27. Trajectories of an ion riðtÞ and an atom raðtÞ during a
classical one-dimensional low-energy collision. The atom of
mass ma approaches the ion of mass mi ¼ 2ma held in the center
of a rf trap with secular frequency ω ¼ 2π=T and Mathieu
parameter q ¼ 0.1, leading to a hard-sphere collision at
ri ¼ ra ¼ rc, t ¼ 0 and rf phase ϕ. For ϕ ¼ π=2 (dotted lines),
the trap field adds energy to the system, causing heating. For
ϕ ¼ 3π=2 (solid lines), the rf field removes energy, binding the
atom to the ion and causing further collisions at various rf phases
until enough energy is accumulated to eject the atom. From
Cetina, Grier, and Vuletic, 2012.
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center-of-mass wave functions can be expanded onto a
suitably chosen basis of orthogonal states, e.g., Fock states
jΦnðRÞi, whereas the relative-coordinate wave functions
jϕkðrÞi can be obtained using, e.g., quantum defect theory
as explained in Sec. II.D. Any remaining interactions between
the relative and center-of-mass coordinates in the static
Hamiltonian can be easily taken into account by computing
appropriate matrix elements, such that the eigenenergies El
and eigenstates jψ lðR; rÞi of the static Hamiltonian can be
obtained by diagonalization. Here n, k, and l denote the
quantum numbers labeling the states. The micromotion
Hamiltonian in the center-of-mass and relative coordinates
is given by

HmmðtÞ ¼ −mig2ω2
i

�
R2 þ μ2

m2
i

r2 þ 2μ

mi
rR

�
cosð2ΩtÞ

− gωi

�
fR; pg þ μ

mi
fr; pg þmi

M
fR; Pg

þ μ

M
fr; Pg

�
sinðΩtÞ: ð77Þ

Here f⋅; ⋅g denotes the anticommutator and μ ¼ mima=M
denotes the reduced mass with M ¼ ma þmi the total mass.
The relative and center-of-mass momenta are denoted by p
and P, respectively.
Next we use Floquet theory to obtain the energies and

eigenstates in terms of the unperturbed eigenstates and we
have to diagonalize the Hamiltonian (Nguyên et al., 2012)

HF ¼ Hstatic þHmmðtÞ − iℏ
∂
∂t : ð78Þ

We use the unperturbed Floquet eigenstates jujli ¼
eijΩtjψ lðR; rÞi of HF −HmmðtÞ as our basis with Floquet
energies ϵjl ¼ El þ jℏΩ. Here the integer j denotes the class
of the Floquet state. Then, we introduce the generalized matrix
elements

hhu�j0l0 jHmmðtÞjujlii ¼
1

T

Z
T

0

dthu�j0l0 jHmmðtÞjujli; ð79Þ

where now T indicates the period of the micromotion. To gain
further insight into the micromotion effect we write the matrix
elements as follows (Nguyên et al., 2012; Joger, Negretti, and
Gerritsma, 2014):

hu�j0l0 jHmmðtÞjujli¼hψ l0 j½V1cosð2ΩtÞ
þV2sinðΩtÞ�eiðj−j0ÞΩtjψ li;

V1¼−mig2ω2
i

�
R2þm2

a

M2
r2þ2ma

M
Rr

�
;

V2¼−
igωimi

ℏ
ðEl0−ElÞ

�
R2þm2

a

M2
r2þ2ma

M
Rr

�
:

ð80Þ

Using these matrix elements, the total ion-atom problem
may be solved by diagonalization taking an appropriate

number of Floquet classes into account. Although the exact
form of the solution will depend on the problem at hand, a few
general remarks can already be made by taking a closer look at
Eq. (80). First of all, we note that selection rules exist for
resonances between the Floquet classes when ϵj0l0 ¼ ϵjl,
which are given by j0 ¼ j� 2 for V1 and j0 ¼ j� 1 for
V2. In the situation studied by Joger, Negretti, and Gerritsma
(2014), the largest effects were due to the matrix elements
containing the relative coordinate r in V2. This is because for
the scattering wave functions jϕnðrÞi, no selection rules exist
for hϕnðrÞjrjϕn0 ðrÞi and hϕnðrÞjr2jϕn0 ðrÞi, such that two
states n and n0 that are separated very far in energy can have
significant coupling. Such combinations of states can cause
resonances between close-by Floquet classes, which signifi-
cantly alter the solutions as compared to the secular approxi-
mation. We note that the prefactors to the terms containing r
and r2 in Eq. (80) are given by ma=M and m2

a=M2, respec-
tively. Therefore, we find again that adverse micromotion
effects may be reduced by choosing mi ≫ ma.
This calculation was used by Nguyên et al. (2012) to study

the effect of micromotion on the controlled collision between
a single atom and ion. This setup was proposed by Doerk,
Idziaszek, and Calarco (2010) as a means to implement a
quantum gate between an ion and an atom and is discussed in
Sec. V.C. Micromotion would put serious restraints on the
proposed scheme, as the atom and ion could couple to higher
energy states, leading to significant heating. Joger, Negretti,
and Gerritsma (2014) studied the effect of micromotion on a
double-well system with a single ion trapped in the middle.
The idea here is that the ion can control the atomic tunneling
between the wells via its internal spin state or motion, leading
to ion-atom entanglement. They found that this system is
affected in a similar way to the situation considered by
Nguyên et al. (2012), although the use of an ion-atom
combination with a suitable mass ratio should allow for the
implementation of the proposed scheme.
The Floquet formalism presented is limited in applicability

to very small systems, i.e., systems with only two particles in
one dimension, or systems with exceptional symmetry. In
particular, for most practical cases an enormous amount of
basis states and Floquet classes needs to be taken into account
to reach convergence. This is compounded by the large energy
separation usually encountered in ion-atom systems. The
trapping frequencies of the atoms usually lie in the kHz
range, whereas the trap drive frequency of the Paul trap lies in
the MHz range, such that each Floquet class contains an
enormous amount of states. An example of the Floquet
quasienergies for the double-well system considered by
Joger, Negretti, and Gerritsma (2014) as a function of the
interwell separation d is shown in Fig. 28. We can see that
although many energy levels are present in the spectrum, the
couplings to the states of interest (the symmetric and anti-
symmetric ground states of the double-well system) are indeed
very small, so that the micromotion should not pose a problem
for the parameters considered here.
Master equation description.—Previously discussed limits

on sympathetic cooling were based on classical or semi-
classical approaches. In contrast, Krych and Idziaszek (2015)
aimed to study this problem quantum mechanically. In their
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approach, the ion is treated as an open quantum system and the
atomic gas provides a reservoir. Using a regularized version
of the ion-atom potential and implying Born and Markov
approximations, Krych and Idziaszek (2015) derived the
master equation for the reduced density matrix of the ion ρ:

_ρ ¼ 1

iℏ
½HS; ρ� −

X
k;k0

n̄kðn̄k0 þ 1Þckk0ck0k=ℏ2

×
Z

dτðeiτðωk−ωk0 Þ½eiðk−k0Þr̂; e−iðk−k0Þr̂ðt;−τÞρ̂�

þ e−iτðωk−ωk0 Þ½ρ̂eiðk−k0Þr̂ðt;−τÞ; e−iðk−k0Þr̂�Þ; ð81Þ

where n̄k are the occupation numbers of the gas modes with
energy ℏωk, ckk0 is the Fourier transform of the interaction
potential, and r̂ is the ion position operator. The problem can
be simplified in the Lamb-Dicke regime where the length
scale of the ion secular motion is much smaller than the
de Broglie wavelength of the reservoir, which allows for
expanding the exponents into a power series, as the expect-
ation value of the operator ðk − k0Þ ⋅ r̂ is much smaller than 1.

Up to the third order, different directions are not coupled and
one arrives at simple equations of motion for the expectation
values of combinations of ionic operators. In particular, the
expectation value of the position and momentum operators is
described by

_̄rj ¼ p̄j=M; ð82Þ

_̄pj ¼ −Mω̃2
j r̄j − p̄j

X
n;m

Cj
nC

j
mη̃nj cos ½ðn −mÞΩt�; ð83Þ

where ω and C coefficients characterize the motion of the bare
ion in the Paul trap, and η is set by the interaction with the
reservoir. The second term in the momentum equation
describes a time-dependent friction force which can lead to
ion cooling or heating. Similar equations can be derived for
operators quadratic in r and p. Based on these solutions,
Krych and Idziaszek (2015) analyzed the cooling rates for
several systems and different trap parameters. We show as an
example the stability diagram for 138Baþ þ 87Rb in Fig. 29.
Within this formalism it is also possible to derive the minimal
achievable ion energies. The most problematic assumption of
this treatment is neglecting the backaction of the ion on the
gas. In experiments, the ion is able to remove a significant
fraction of atoms from the condensate, which potentially can
change the cooling dynamics.

5. Octupole and higher-order ion traps

Another way to mitigate the effects of micromotion-
induced heating is to use octupole or higher-order ion traps
(Wester, 2009; Deiglmayr et al., 2012; Höltkemeier et al.,
2016a, 2016b), in which the electric field increases as rn−1,
with r the distance from the center of the trap and n ≥ 2 the
multipole order of the trap. Such traps can be created by
employing more than four radio-frequency electrodes for the
ion trap, as shown in Fig. 30. In this situation, the center of the
trap features nearly field-free regions (Deiglmayr et al., 2012)
such that atoms trapped in this region should cause more
efficient sympathetic cooling than is possible in Paul traps.

FIG. 28. (a) The effect of micromotion on the quantum
dynamics of an atomic double-well system interacting with a
single ion shown. (b) The quasienergy spectrum is shown as a
function of interwell separation d. The spectrum shows the
symmetric and antisymmetric ground states of the double-well
system, and its energy difference is proportional to the atomic
tunneling rate. It can be seen that for large d, there is almost no
tunneling, whereas as d gets smaller tunneling (i.e., energy
splitting) occurs. Since the atom needs to pass the ion during
tunneling, the rate depends on the internal state of the ion and can
thus be used to entangle the ion and atom (Gerritsma et al., 2012).
Taking micromotion into account leads to many additional
quasienergies that run almost vertically up as a function of d.
As d gets smaller, the coupling between the two ground states and
the high energy Floquet states get larger, until for very small d,
the two ground states disintegrate which signals the breakdown of
the double-well system. For the calculation, 7Li and 171Ybþ were
assumed with atomic trap frequency ωa ¼ 2π × 98 kHz and
Ωrf ¼ 2π × 967 kHz with q ¼ 0.4 and a ¼ 0 for the ion such
that ωi ¼ 2π × 137 kHz. For the calculation the Floquet classes
j ¼ −2;…; 2 were taken into account. Adapted from Joger,
Negretti, and Gerritsma, 2014.

FIG. 29. The cooling rate in one spatial direction for an 138Baþ

immersed in 87Rb gas with density 1012 cm−3 and temperature
of 200 μK calculated using a master equation formalism as a
function of Paul trap parameters a and q with Ω ¼ 2π × 1 MHz.
Adapted from Krych and Idziaszek, 2015.
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Höltkemeier et al. (2016b) showed in theory that the critical
mass ratio—at which efficient sympathetic cooling is still
possible—depends on the multipole order n and the spatial
extent of the atomic cloud in the center of the ion trap. In this
way, a broad range of ions could be sympathetically cooled,
and the higher-order traps up to n ¼ 22 find application in
studying molecular ions and anions via cryogenic (Gerlich,
1995; Wester, 2009) and ultracold gases (Deiglmayr et al.,
2012).
A disadvantage of the use of higher-order traps for some

of the applications envisioned in hybrid ion-atom systems is
that they do not allow for tight localization of individual ions.
This seriously reduces some of the merits of the trapped ion
platform such as long lifetimes and the ability to ground state
cool the ions with lasers.

D. Alternative techniques

1. Optical ion trapping

Since the radio-frequency trap limits attainable temper-
atures due to micromotion, a promising new route toward a
colder ion-atom mixture is to use alternative trapping methods
for the ion. In recent years, optical trapping of ions in optical
tweezers and optical lattices has been demonstrated
(Schneider, Enderlein et al., 2010; Enderlein et al., 2012;
Schneider et al., 2012; Huber et al., 2014; Schaetz, 2017).
Obviously the optical trapping potential, which interacts with
the dipole polarizability of the ion, is much shallower than that
of the radio-frequency trap, which interacts with the charge of
the ion. Therefore, trapping lifetimes have for a long time been
limited to milliseconds, with recent improvements providing
3 s lifetime (Lambrecht et al., 2017), comparable to atoms
under similar trapping conditions. Technical improvements
should lead to further lifetime enhancements in the future.

It is important to note that, although the trap depth is much
smaller than for the Paul trap, the confinement can be made
equally tight using focused lasers or optical lattices, where
trapping frequencies in the MHz regime have been achieved in
1D (Enderlein et al., 2012) and are within reach for higher
dimension. Preparation and cooling of ions can be performed
in a Paul trap that is then adiabatically switched off and the
ions are loaded into an optical trap. Using such an approach,
trapping of multiple ions forming a one-dimensional Coulomb
crystal in a single-beam optical dipole trap have been
demonstrated (J. Schmidt et al., 2018). Anharmonicities in
the trapping potential in combination with the radio-frequency
drive may result in parametric excitation of the ions leading to
ion loss. This may be mitigated by a more accurate trapping
design and deeper optical potential, i.e., by using higher power
lasers. Alternatively, loading in a deep dipole trap of low
trapping frequencies and loading out of a MOT via photo-
ionization will avoid the rf overlap in the first place. An
interesting benefit to the optical dipole trap approach is that
the atoms may be straightforwardly trapped in the same
potential, leading to very accurate overlap between the two
species. Since the laser field also constitutes an oscillating
electric field, it was found that ions in optical traps also
display micromotion, albeit at a very low amplitude (and at
optical frequencies) (Cormick, Schaetz, and Morigi, 2011).

2. Schemes involving Rydberg excitations

A different idea of realizing a hybrid ion-atom system is
to produce the charges directly from the ultracold gas. The
simplest way to do it without introducing additional traps for
the charged particles is via Rydberg excitation. In this way, the
Rydberg electron and the ionic core remain bound but the
typical distance between them is large enough to allow for
observing interaction effects with neutral atoms in the cloud.
The electron typically plays a much more important role in the
dynamics of the system than the ion. This is caused by the vast
difference in reduced masses in electron-atom and ion-atom
collisions. Low reduced mass makes the centrifugal barrier
huge and prevents high partial wave scattering. At the same
time, the s-wave interaction can be well described by the zero
range interaction proportional to 4πℏa=μ. Within the mean-
field approximation, the potential experienced by the atoms
due to the presence of a Rydberg electron can then be
expressed as

VðrÞ ¼ 4πℏ2a
μ

jψðrÞj2;

where ψðrÞ is the Rydberg orbital. Balewski et al. (2013)
demonstrated that the Rydberg electron can indeed impact the
whole condensate and lead to phonon excitations. The size of
the orbital, which determines how many atoms on average will
interact with the electron, can be adjusted by changing the
principal quantum number n and the density of the cloud.
Studying the line shapes of the excitation spectra revealed
sharp lines caused by the formation of molecules in the few-
atom regime, which turn into a broad shift in the many-atom
limit (Gaj et al., 2014), where a Rydberg polaron can be
formed (Camargo et al., 2018). The theoretical description of

FIG. 30. Schematic of a linear rf trap with n ¼ 4. The atoms are
indicated in red; the ion is shown in blue. The eight radio-
frequency electrodes are indicated by the gray cylinders. The
two insets on the right illustrate two elastic collisions, one close to
the trap center and the other close to the ion’s turning point. The
trap radius r0 is indicated by the arrow. From Höltkemeier et al.,
2016a.
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Rydberg polarons was provided by Schmidt, Sadeghpour, and
Demler (2016) and R. Schmidt et al. (2018) in terms of the
functional determinant approach.
The role of the atomic ion in such systems has so far been

rather marginal. This is due to the fact that the interaction with
the electron is orders of magnitude stronger and spread over a
large number of atoms, while the ion acts only locally,
meaning that in a dilute gas the effects of the ion are not
detectable on the time scale of the experiment which is limited
to a few μs by the decay of the Rydberg atom. Inelastic
processes leading to the formation of a molecular Rbþ2 ion
have been observed (Schlagmüller et al., 2016), but the role of
the Rydberg electron was crucial for the process. In order to
probe the ion dynamics in the Rydberg setup, it would be
beneficial to diminish the role of the electron. The possible
strategies to achieve this include (i) working with large
Rydberg orbits and small atomic clouds, so that the electron
wave function does not strongly overlap with the atoms (see
Fig. 31); (ii) increasing the density of the gas to make ion-
atom collisions more frequent and be able to work at shorter
time scales; and (iii) confining the atomic gas in a reduced-
dimensional setup to further decrease its overlap with the
electron. Along these lines, a recent experiment (Kleinbach
et al., 2018) working with up to 190S Rydberg state and a very
tight, anisotropic optical tweezer trap for the atoms detected
the presence of the ion by showing that it contributes to
broadening of the Rydberg excitation line. In order to be able
to probe the dynamics of the ion, the electron would need to be
removed from the gas completely, e.g., by exciting it to a
circular state with high angular momentum. This would
potentially allow one to study the ion remaining in the cold

gas for long times and at submicrokelvin temperatures, close
to the s-wave collisional limit. Next, Engel et al. (2018)
observed a Rydberg blockade on a highly excited ultracold
Rydberg atom induced by a single ion mediated over tens of
micrometer distances. The ion was produced from an ultracold
atomic ensemble via near-threshold photoionization of a
single Rydberg excitation, employing a two-photon scheme
which was specifically suited for generating a very low-
energy ion.
Another strategy involving the Rydberg excitation was

proposed by Schmid et al. (2018). In this scheme, one starts
from an ultralong-range Rydberg molecule composed of a
neutral atom bound in the outer well of the Rydberg potential.
This molecule is then photoionized, which initializes the ion-
atom scattering event with the initial wave packet formed from
the Rydberg molecule wave function with the mean kinetic
energy as low as a few μK and a strongly nonthermal profile.
Importantly, as the molecule is spherically symmetric, the
collision can happen only in the s wave (although with
considerably higher energy) if stray electric fields which
would induce partial wave mixing are compensated well
enough. Dynamics of the wave packet strongly depends on
the sign of the ion-atom scattering length a. For large and
positive a, there is a weakly bound molecular state which
can have large overlap with the initial state. As a result, two
separate shells (molecular and dispersive) are formed during
the collision. Measuring the bound fraction of the wave packet
as well as its expansion velocity allows one then to obtain
information about the scattering length.
A new direction of research is to study trapped ions

interacting with ultracold atoms that are coupled to
Rydberg states (Hahn, 2000). The strong polarizabilities of
the Rydberg atoms would increase the interaction strength
between atoms and ions by many orders of magnitude, as
compared to the case of ground-state atoms. Such interactions
may be mediated over much larger length scales as well.
In particular, an atom that is dressed with a Rydberg state
jnS1=2i, with a (effective) Rabi frequency Ω and detuning Δ0,
experiences an adiabatic potential (Secker et al., 2016)

VðRÞ ¼ −
AR4

w

R4 þ R4
w

ð84Þ

when it is a distance R away from a trapped ion. The depth
of this potential is given by A ¼ ℏΩ2=Δ0 and its width by

Rw ¼ ðCjnSi
4 ℏΔ0Þ1=4. Here n denotes the principal quantum

number of the Rydberg state and CjnSi
4 is proportional to the

polarizability of the Rydberg state. When we consider a
lithium atom with n ¼ 30, Ω ¼ 2π × 10 MHz, Δ0 ¼
2π × 1 GHz, we find A=h ¼ 100 kHz and Rw ¼ 1 μm, such
that Rw ≫ R⋆ (e.g., assuming Ybþ). For these numbers, the
lifetime of the dressed atom is enhanced by a factor of 104 as
compared to the Rydberg state, such that coherent experi-
ments on the 100 ms timescale seem possible. In Fig. 32 we
show the resulting adiabatic potential.
Possible applications envisioned for the Rydberg-ion sys-

tem would include ion-atom quantum gates and interfaces
(Secker et al., 2016) and novel (repulsive) ion-atom inter-
actions (Secker et al., 2017; Wang et al., 2019) obtained by
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FIG. 31. Single Rydberg electron immersed in a BEC: (a) com-
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(b) corresponding interaction potentials. From Balewski et al.,
2013.
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Rydberg dressing on a dipole-forbidden transition. Such
repulsive ion-atom interactions could allow one to reach
ultracold temperatures despite micromotion and for any mass
ratio. The feasibility of such a setup, in which Rydberg
excitation occurs within a Paul trap, has been established by
two recent experiments that demonstrated Rydberg excitation
of trapped ions (Feldker et al., 2015; Higgins et al., 2017).
Recently, Ewald et al. (2018) reported on the observation of
interactions between ions in a Paul trap overlapped with
ultracold Rydberg atoms. They observed inelastic collisions,
manifested in charge transfer between the Rydberg atoms and
ions, exceed Langevin collisions for ground-state atoms by
about 3 orders of magnitude in rate, which indicates a large
increase in interaction strength. Furthermore, Haze et al.
(2019) demonstrated Stark spectroscopy of Rydberg levels
in the trap for measuring electric fields. These results pave the
way toward tuning interactions between ultracold atoms and
ions by laser coupling to Rydberg states for future studies,
e.g., of charge transport (Mukherjee, 2019).

3. Photoionization

Creation of charges in an ultracold cloud can also be
accomplished using other methods than Rydberg excitation.
Direct photoionization of atoms using a femtosecond laser
was studied by Wessels et al. (2018). So far, the experiment
focused only on the process of strong-field ionization itself
and not on the ionic products.

V. APPLICATIONS OF COLD ION-ATOM SYSTEMS

In this section we review experimental studies of ion-atom
dynamics, in particular, charge exchange and other inelastic
processes. Then we address the theoretical proposals for
studying ions immersed in ultracold atomic systems in the
context of future applications such as quantum simulations,
computations, and probing. We discuss what unique features
the ion-atom systems can add to the field of quantum
technologies as compared to other existing systems.

A. Cold collisional studies

A good understanding of the collisional properties of hybrid
ion-atom systems is crucial for further applications. This
requires not only high performance theoretical calculations,
but also taking into account potentially very complex dynam-
ics resulting from the specific features of the experimental
setup. The most notable example here is the micromotion of
the ion.
It is experimentally challenging to separate different proc-

esses taking place in the system, such as inelastic two- and
three-body collisions, possibly involving photons coming
from the trapping lasers. Inhomogeneous atomic density
and nonthermal kinetic energy distribution of the ion have
to be taken into account. Ion micromotion typically sets the
lower limit for the achievable mean ion energy, but also
provides a tool for controlling it by introducing excess
micromotion on purpose. In this section we focus on the
collisional ion-atom physics in realistic environments. So far,
all experimental results have been obtained using hybrid
setups involving the Paul trap except for a single experiment
in which the ion is created by ionization of a Rydberg atom
(Engel et al., 2018). The studied systems are listed in
Table VI. We start the discussion with experiments probing
the dynamics resulting mainly from two-body elastic and
charge-transfer collisions and then move to spin relaxation
and three-body effects.
In a proof-of-principle experiment, Smith, Makarov, and

Lin (2005) successfully built a hybrid ion-atom trap designed
to co-trap laser-cooled Caþ ions together with cold Na atoms.
They showed that the rf fields generated by the linear Paul trap
do not destroy the magneto-optical trap used for the atoms.
The first observations of cold ion-atom collisions was made by
Grier et al. (2009) studying charge exchange in different
isotopic combinations of Ybþ þ Yb at energies ranging from
35 mK to 45 K. Even at the lowest achievable energies the
collisions involved over 40 partial waves. Detection of charge-
exchange events was possible with isotope-selective fluores-
cence imaging. The measured rates, shown in Fig. 33, were
consistent with the predictions of the Langevin model. In a
subsequent theoretical analysis, Zhang, Dalgarno, and Côté
(2009) calculated the differential cross sections and showed
that at experimentally probed collision energies the elastic
collision leads to a peak at small scattering angles, whereas
charge transfer is characterized by enhanced backscattering.
Heteronuclear Ybþ þ Rb collisions were investigated by

Zipkes, Palzer, Ratschbacher, Sias, and Köhl (2010) and
Zipkes, Palzer, Sias, and Köhl (2010). Collisional processes
were probed at energies corresponding to 0.2–5 K. Elastic
collisions with the ion typically lead to loss of atoms from the
trap if the momentum transfer exceeds the trap depth, so
measuring the number of atoms via absorption imaging can be
used to infer the elastic collision cross section. Furthermore,
for small energy transfers the atom stays in the trap and
thermalizes with the rest of the cloud, which results in heating
the whole system. Another effect which has to be included is
the “evaporative heating” of the atoms, as the ion preferen-
tially removes them from the center of the trap where the
density is the highest and typical momenta are the lowest.
Finally, one should keep in mind that the steady state of the
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FIG. 32. Adiabatic potentials for a ground-state atom and an ion
(solid black), for a dressed atom with Ω ¼ 2π× 10 MHz and
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dashed) assuming coupling to the j30S1=2i state of lithium. From
Secker et al., 2016.
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ion is influenced by the Paul trap. This complicated dynamics
could be modeled using Monte Carlo calculations described in
detail by Zipkes et al. (2011). Figure 34 shows the exper-
imental results which are well reproduced by the simulations,
provided that the differential cross section calculated from the
quantum scattering model is used instead of the classical
approximation (Côté and Dalgarno, 2000). Reactive collisions
were also studied in the same experiment by means of
fluorescence imaging. In contrast to the homonuclear case,
the observed reaction rates were 5 orders of magnitude smaller
than the characteristic Langevin rate. Measurements of the
density dependence of the reaction rates showed that the

observed loss of Ybþ is due to two-body collisions.
Surprisingly, no molecular ions were detected although one
would expect radiative association to be important. Similar
results, with low reaction rates and no production of molecular
ions, were obtained by Schmid, Härter, and Hecker Denschlag
(2010) with the Baþ þ Rb system. However, the lack of
molecular ions may result from multiple processes such as
secondary collisions with the atoms or photodissociation
caused by the trapping laser fields.
In the next step, Ratschbacher et al. (2012) studied

controlled chemical reactions by tuning the quantum states
of the reactants. Such full control over the quantum mechani-
cal degrees of freedom in a chemical reaction is of key interest
for quantum-contolled chemistry and allows the identification
of fundamental interaction processes and even the steering
of chemical reactions on the single-particle level. Charge-
exchange reaction rates of electronically excited ions showed

TABLE VI. Summary of cold ion-atom systems investigated experimentally.

Ion Atom References

Ybþ Yb Grier et al. (2009)
Ybþ Rb Zipkes, Palzer, Ratschbacher, Sias, and Köhl (2010), Zipkes, Palzer, Sias, and Köhl (2010), and Ratschbacher et al. (2012,

2013)
Rbþ Rb Schmid, Härter, and Hecker Denschlag (2010), Härter et al. (2012), Ravi et al. (2012a, 2012b), Schmid et al. (2012), Lee,

Ravi, and Rangwala (2013), Ray et al. (2014), Engel et al. (2018), Kleinbach et al. (2018), and Haze et al. (2019)
Baþ Rb Schmid, Härter, and Hecker Denschlag (2010), Schmid et al. (2012), Hall, Aymar et al. (2013), Krükow, Mohammadi,

Härter, and Hecker Denschlag (2016), and Krükow et al. (2016)
Caþ Rb Hall et al. (2011), Hall, Eberle et al. (2013), and Eberle et al. (2016)
Ybþ Ca Rellergert et al. (2011)
Baþ Ca Sullivan et al. (2012)
Naþ Na Sivarajah et al. (2012) and Goodman et al. (2015)
Caþ Li Haze et al. (2013, 2015, 2018) and Saito et al. (2017)
Caþ Na Smith et al. (2014)
Srþ Rb Meir et al. (2016), Meir, Pinkas et al. (2018), Meir, Sikorsky et al. (2018), and Sikorsky, Meir et al. (2018)
Kþ Rb Dutta, Sawant, and Rangwala (2017)
Rbþ Cs Dutta, Sawant, and Rangwala (2017)
Csþ Cs Dutta and Rangwala (2018)
Csþ Rb Dutta and Rangwala (2018)
Ybþ Li Joger et al. (2017), Ewald et al. (2018), and H. Fürst et al. (2018)

FIG. 33. Charge-exchange rate coefficient measured for the
Ybþ þ Yb system as a function of average collision energy.
Circles and green and blue diamonds represent 172Ybþ þ 174Yb,
172Ybþ þ 171Yb, and 174Ybþ þ 172Yb, respectively. The solid line
gives the Langevin rate, while the dashed line accounts for the
contribution of the electronically excited Yb present due to MOT
lasers. The black arrow indicates the ionization isotope shift
between 174Yb and 172Yb. From Grier et al., 2009.

(a) (b)

FIG. 34. (a) Atom loss from the magnetic trap as a function of
the ion energy in the 172Ybþ þ Rb experiment. The solid line
results from the numerical simulation based on the full collision
cross section, while the dashed line gives the predictions of the
Langevin model. Points are experimental results. (b) Temperature
increase of the atomic cloud vs mean ion energy. From Zipkes,
Palzer, Ratschbacher, Sias, and Köhl, 2010.
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that the 2D3=2 state of Yb reacts with Rb at the Langevin rate,
while for the 2F7=2 state the rate was 2 orders of magnitude
lower. Changing the hyperfine state of the atoms from j2; 2i
to j1; 1i while keeping the ion in the ground electronic state
led to enhancement of the reaction rate by a factor of 35,
demonstrating the important role of the hyperfine interaction.
By monitoring the ion fluorescence, it was shown that in about
4% of the events the electronically excited ion stayed in the
trap after the inelastic process and was recooled again after
some time, indicating radiative decay back to the ground state.
Hall et al. (2011) and Hall, Eberle et al. (2013) studied cold

reactive collisions between laser-cooled Caþ ions forming a
crystal and Rb atoms. They observed rich chemical dynamics
and interpreted it in terms of nonadiabatic and radiative charge
exchange as well as radiative molecule formation. They
studied the role of light-assisted processes and showed that
the efficiency of the dominant chemical pathways is consid-
erably enhanced in excited reaction channels. Next, Hall,
Aymar et al. (2013) studied cold chemical reactions between
laser-cooled Baþ ions and Rb atoms. A number of ions
forming a Coulomb crystal was overlapped with an atomic
cloud. Monitoring the number of remaining ions enabled the
measurement of the reaction rate; see Fig. 35(a). Molecular
dynamics simulations were used to characterize the ion energy
distribution. The average energy could be controlled by
changing the number of ions, as for large crystals more ions
were far from the trap center where micromotion is larger.
Different reaction products could be detected via resonant
excitation mass spectrometry as presented in Fig. 35(b).
Molecular ions were clearly detected. However, multiple
secondary processes could not be excluded so a direct
comparison to theoretical branching ratios was not possible.
Different electronic states of the ion could be probed by
adjusting the ion cooling laser. The energy dependence of the
reaction rates was consistent with the Langevin predictions.
In order to improve the energy resolution of the measure-

ments, Eberle et al. (2016) developed a novel dynamic hybrid
trap. Their approach is based on pushing a cloud of laser-
cooled Rb atoms through a stationary Coulomb crystal of cold
ions by using precisely controlled, tunable radiation pressure
forces. The atom kinetic energies can be controlled over an
interval ranging from 30 up to 350 mK with energy spreads as
low as 24 mK. In an alternative approach, Puri et al. (2018)

demonstrated the high-resolution collision energy control
through ion position modulation in atom-ion hybrid systems
by translating an ion held within a radio-frequency trap
through a magneto-optical atom trap. The technique allows
one to control ion kinetic energies from 0.05 to 1 K with a
fractional resolution of ∼10.
A different heteronuclear system, namely, Ybþ colliding

with Ca atoms, was studied by Rellergert et al. (2011). In
this case the observed chemical reaction rate was close to
the predictions of the Langevin model due to strong
charge-transfer processes. This was explained by theoretical
calculations of the transition dipole moment and Franck-
Condon factors, which turned out to be large in this system
due to an avoided crossing between the X2Σþ and A2Σþ

states. The branching ratio between the radiative association
and charge-transfer process was measured to be below
2%, while theoretical calculation predicted a much higher
value.
Sullivan et al. (2012) investigated the case of the Baþ þ Ca

system in which the charge-exchange process is energetically
forbidden unlessCa is electronically excited by the cooling laser.
However, the electric field of the ion shifts the atoms away from
resonance at short distances, suppressing the reaction in this
channel.On the other hand, excitationof the ion changesonly the
dispersion interaction with the atoms, and the ion is not shifted
from the resonance, making inelastic processes possible. By
estimating the population of different electronic states in the
trap using the Liouville equation it was possible to extract the
reaction ratekp for theBaþð2P1=2Þ þ Cað1SÞ inelastic collisions,
finding kp ¼ 4.2ð1.9Þ × 10−10 cm3=s.
Ravi et al. (2012b) studied cooling of an Rbþ ion by Rb

atoms. It has been shown that placement of the dense atomic
cloud in the center of the Paul trap is beneficial for cooling
efficiency, as collisions occur in the region where the ion
macromotion is classically the fastest. An additional cooling
mechanism characteristic for collisions of the ion with its
parent neutral particle has been suggested: cooling by resonant
charge exchange. The electron can be transferred between
the particles without any other change in the internal states,
producing a translationally cold ion and a very hot atom which
leaves the trap. Further experimental evidence that resonant
charge exchange can be important for the cooling was given
by Dutta, Sawant, and Rangwala (2017), where the dynamics
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of Csþ ions in Cs and Rb gases was compared and the cooling
was more efficient when using Cs.
Collisions between Rbþ ions and laser-cooled Rb atoms

were also investigated by Lee, Ravi, and Rangwala (2013).
Here the ions were produced directly from the atomic cloud by
two-photon ionization which results in high average kinetic
energy. The measured quantity was atomic fluorescence from
the MOT. Analysis of rate equations provided an estimate
for the total two-body collision rate (including elastic and
resonant charge exchange) k ¼ 1.23ð42Þ × 10−7 cm3=s. This
large value results from the fact that 28% of the atomic
population is estimated to be in the electronically excited state
due to using the magneto-optical trap.
The study of the Caþ þ Na system started by Smith,

Makarov, and Lin (2005) enabled the measurement of the
charge-transfer rates reported by Smith et al. (2014). In
this case they loaded the Paul trap with Caþ ions in the
presence of a Na MOT and found a strong loss of Caþ ions.
Here radiative charge transfer was predicted to be very
slow. However, the measured loss rate constant was estimated
to be 2 × 10−11 cm3=s. It was conjectured that a nonradiative
process from the Caþð2SÞ þ Nað2PÞ entrance channel is
responsible for the observed loss. As in the case of Lee,
Ravi, and Rangwala (2013), excited-state population of Na
results from the MOT lasers. It is noteworthy that the rate
coefficient, while unexpectedly large, is still 2 orders of
magnitude smaller than the Langevin rate. The same exper-
imental setup allowed for measurements of Naþ þ Na colli-
sion rates (Goodman et al., 2015) by investigating both the
atomic population in the MOT and the number of ions in the
Paul trap. As the Naþ ions are optically dark, they were
directly detected with an electron multiplier. Using an
improved version of the rate-equation model proposed by
Lee, Ravi, and Rangwala (2013), the total collision rates for
both ground- and excited-state Na atoms were determined and
turned out to agree with theoretical predictions.
The trap geometry and electric fields present in the system

are important for the efficiency of the sympathetic cooling of
single or multiple ions by the atomic cloud. For this reason
Goodman et al. (2012) performed a realistic classical trajec-
tory simulation of ion trajectories in a hybrid trap for
experimentally realistic parameters. They concluded that it
should be possible to simultaneously cool several ions at the
same time, provided that the atomic density is sufficiently high
to combat the effect of rf heating. In a subsequent experiment,
Sivarajah et al. (2012) demonstrated sympathetic cooling of
hot Naþ ions by Na atoms trapped in a magneto-optical trap.
The Smith group also investigated the dynamics of loading

ions into a linear Paul trap by photoionization of atoms from a
magneto-optical trap. In combined theoretical and experimen-
tal studies, Blümel et al. (2015) and Wells et al. (2017)
showed the universal, nonlinear, nonmonotonic behavior of
the saturation curves of magneto-optical-trap-loaded Naþ ions
stored in an ion-neutral hybrid trap as a function of the
loading rate.
Sympathetic cooling of the ion by the atomic cloud is

expected to be most efficient for large ion-to-atom mass ratios.
For this reason, the Mukaiyama group focused on the Caþ þ
Li system. Observation of elastic collisions via decay of the

atomic cloud was reported by Haze et al. (2013). The energy
was controlled by changing the loading time of the ions and
covered the range 100 mK to 3 K. The measured rates were in
agreement with the semiclassical model (Côté and Dalgarno,
2000). Recently, Haze et al. (2018) demonstrated sympathetic
cooling in this system, when efficient collisional cooling
was realized by suppressing collision-induced heating.
Charge-exchange collisions were investigated in the next step
by Haze et al. (2015) in the mK energy regime. While for
Caþ in the S1=2 state the inelastic processes are improbable,
excited electronic states could be populated in the experiment
by the cooling lasers using the optical pumping technique.
Collisional quenching from theD3=2 state did not contribute to
the losses, as the ion would stay in the trap and become
quickly recooled again. Only Liþ ions were detected as
reaction products. The measured rate coefficients were kD3=2

¼
8.2ð6Þ × 10−11 cm3=s and kP1=2

¼ 3.0ð5Þ × 10−10 cm3=s,

while kS1=2 < 7 × 10−13 cm3=s (only the upper bound could
be given in this case). These values are again much lower
than the Langevin rate, which for Caþ þ Li is kL ¼
5 × 10−9 cm3=s. Further investigation of the charge-exchange
process for this system was given by Saito et al. (2017). This
time the energy could be manipulated from 1 mK to 1 K by
controlling the excess micromotion. The energy dependence
of inelastic collision cross sections was in agreement with the
Langevin predictions.
Joger et al. (2017) investigated the inelastic collision rates

for the Ybþ þ Li system which is even more favorable for
reaching the quantum limit in hybrid ion-atom systems due to
large ion-to-atom mass ratio. For the ground-state collisions
they found the charge transfer and association rate to be at
least 103 times smaller than the Langevin collision rate, in
agreement with theory (Tomza, Koch, and Moszynski, 2015).
For ions prepared in the excited electronic states, they found
that the inelastic collision rate is dominated by charge transfer
and does not depend on the ionic isotope nor the collision
energy in the range 1–120 mK. Interestingly, they found the
loss rates for the Ybþ ion in the 2F7=2 state an order of
magnitude larger than for the 2D3=2 state. By comparing these
measurements with the results presented by Ratschbacher
et al. (2012) it can be conjectured that the electronic
configuration of atomic thresholds and related molecular
states surrounding the ion-atom entrance channel is more
important than the strength of spin-orbit coupling to determine
the short-range probability of nonradiative charge transfer for
collisions involving Ybþ ions.
Apart from measuring the collision rates for different

hyperfine levels, it is an intriguing idea to treat the ion as a
qubit and measure its decoherence due to the atomic bath. This
was achieved by Ratschbacher et al. (2013) using 174Ybþ,
which is an ideal two-level system due to its vanishing nuclear
spin. It turned out that an initially polarized ion decayed into a
mixed state within only a few Langevin collisions, both for the
case when spin-exchange collisions were allowed (Rb was
prepared in F ¼ 1, mF ¼ 1 state) and for the case when they
were forbidden (which is the case for the fully stretched state
jF ¼ 2; mF ¼ 2iRb andmf ¼ 1=2 for Ybþ). This indicates the
prominent role of the second-order spin-orbit coupling in the
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Ybþ þ Rb system and was confirmed theoretically by
Tscherbul, Brumer, and Buchachenko (2016). Such spin-orbit
interactions seriously impede on some of the applications
envisioned for ion-atom systems. This is particularly true for
applications in quantum information science as the quantum
information is usually stored in the internal spin states of the
ions and atoms. Ratschbacher et al. (2013) also studied the
more complicated case of 171Ybþ which has F ¼ 0 and F ¼ 1
states. Their results are presented in Fig. 36. Here the initially
populated jF ¼ 1; mF ¼ 0iYb state decayed exponentially to
the ground F ¼ 0 state if the atoms were in FRb ¼ 1manifold,
but for FRb ¼ 2 case a nonzero steady-state population of the
initial state remained. This could be understood as the effect of
large energy release during hyperfine changing collisions
which could be transferred both to kinetic and spin degrees of
freedom.
In more recent work, spin changing collisions were studied

in Srþ interacting with ultracold 87Rb atoms (Sikorsky, Meir et
al., 2018) and Ybþ interacting with cold 6Li (H. Fürst et al.,
2018). For these systems spin-exchange rates were also
found to be on the order of the Langevin collision rates.

Spin-relaxation rates were however found to be significantly
smaller than in Ybþ þ Rb especially for the combination
Srþ þ Rb, where this rate was found to be 48(7) times slower
than the Langevin collision rates (Sikorsky, Morita et al.,
2018). Theoretical studies of the spin-exchange processes
(Côté and Simbotin, 2018; H. Fürst et al., 2018; Sikorsky,
Morita et al., 2018) revealed the surprising result that spin-
exchange rates strongly depend on the difference between the
singlet and the triplet scattering lengths even in the mK
regime, where many partial waves contribute and thermal
averaging has to be applied. By measuring the cross section at
relatively high temperatures, one can thus gain information
about the s-wave regime. This phase locking between differ-
ent partial waves in spin-exchange collisions has important
consequences. For Ybþ þ 6Li, for instance, the observed large
spin-exchange rate in the mK regime indicates a large
difference between singlet and triplet scattering lengths.
These results suggest that broad magnetic Feshbach resonan-
ces can be expected when the s-wave regime of collisions is
reached (Chin et al., 2010; Tomza, Koch, and Moszynski,
2015). Since it is expected that Ybþ þ 6Li can reach this
regime in a Paul trap (H. A. Fürst et al., 2018b), this result is
very encouraging in the quest for observing ion-atom
Feshbach resonances. In Srþ=Rb, this effect may be exper-
imentally confirmed in the near future by comparing spin-
exchange rates of different Sr isotopes (Sikorsky, Morita et al.,
2018). The origin of the phase locking lies in the short-range
nature of the spin-exchange interaction, which makes it
insensitive to the shape of the centrifugal barrier (Côté and
Simbotin, 2018; Sikorsky, Morita et al., 2018), in a similar
spirit as setting constant short-range phases in the quantum
defect approach.
If the atomic cloud has high enough density, three-body

processes which happen at the rate Γ ¼ K3n2 can become
important. Three-body collisions involving the ion were first
investigated by Härter et al. (2012) for the Rbþ þ Rbþ Rb
system. Additionally, the ion constantly undergoes two-body
collisions which lead to atom loss. Figure 37 shows the atomic
decay for twodifferent atomic densities. For the dilute cloudwith
n ≈ 1011 cm−3 three-body collisions happen at a very low rate.
At higher densities, the spread in the data becomesmuch greater.
This can be explained by a three-body collision which leads to
the association of aRb2 molecule and large energy transfer to the
ion. The ion is then ejected onto a highly excited orbit of the
Paul trap, where the atomic density is much lower and slowly
recooled back via elastic collisions with the atoms. At the
time spent in the low density regions, the ion cannot effici-
ently remove the atoms. As a result, the atom number distri-
bution develops a tail toward large values which is not seen at
low densities. The estimated rate constant for the three-body
process is k3 ¼ 3.3ð3Þ × 10−25 cm6=s while for two-body
collisions the rate coefficient is k2¼5.0ð5Þ×10−9 cm3=s.
Assuming 1012 cm−3 density gives Γ3≈10−1 s−1 while
Γ2 ≈ 5 × 103 s−1. Another valuable bit of information is the
binding energy of the Rb2 molecule produced in the recombi-
nation process. Thiswas estimatedby lowering the ion trapdepth
and checking if the ion is lost or not, giving ΔE ¼ 0.4ð1Þ eV.
The techniques previously described allowed Härter,

Krükow, Deiß et al. (2013) to perform an experiment, in
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FIG. 36. Hyperfine spin relaxation in 171Ybþ interacting with
ultracold Rb atoms. (a) The probability pBright after preparation
of the ion in the jF ¼ 1; mF ¼ 0ii (full symbols) or the jF ¼ 0;
mF ¼ 0ii (open symbols) state vs the interaction time for atoms
in the jF ¼ 1; mF ¼ −1ia state. Error bars denote 1 standard
deviation uncertainty intervals resulting from a total of 5000
measurements. The fit values at t ¼ 0 are limited by detection
errors. (b) Similar data for collisions with 87Rb atoms in the
jF¼2;mF¼2ia state and a total of 19 000 measurements. (c)–(e)
Zeeman-resolved detection within the F ¼ 1 manifold after
preparation in jF ¼ 1; mF ¼ 0ii (atoms in jF ¼ 2; mF ¼ 2ia)
with 1200 measurements per Zeeman state. The measurements
are performed by applying resonant π pulses, exchanging the
population of the dark state jF ¼ 0; mF ¼ 0ii with jF ¼ 1;
mF ¼ −1ii, jF ¼ 1; mF ¼ 0ii or jF ¼ 1; mF ¼ 1ii immediately
before the detection of the probability of the ion being in the dark
state pDark. From Ratschbacher et al., 2013.
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which spectroscopy was performed on Rb2 molecules that
were created by three-body recombination, thus allowing one
to probe the population distribution over the molecular states.
For this, the molecules were ionized to Rbþ2 followed by ion
detection, either via a co-trapped Baþ ion or by observing the
atom loss as a result of the presence of the ions. This
pioneering work in state-to-state product detection for a
neutral reactive process was extended by Wolf et al.
(2017), who introduced a two-color ionization scheme that
permitted them to measure quantitative branching fractions for
producing various rotational levels of the last five most weakly
bound states of the Rb2 molecules. Numerical three-body
calculations based on the long-range potentials provided
semiquantitative agreement and aided the development of
propensity rules for the distribution of recombination products
in this ultracold state-to-state chemistry experiment.
Three-body recombination involving an ion in the mK

regime was further investigated using a Baþ ion in Rb gas by
Krükow et al. (2016). By introducing excess micromotion in a
controllable fashion, it was possible to measure the energy
dependence of the recombination rate k3. Here the measure-
ment relied on fluorescence imaging of Baþ shortly after
placing the ion in the atomic cloud. The total loss rate
Γ ¼ k2nþ k3ðEÞn2 includes two-body charge transfer for
which the rate is independent of energy as well as three-body
recombination. Agreement with theoretical predictions of
Pérez-Ríos and Greene (2015) that k3 ∝ E−3=4 could be
reached only by including the nonthermal energy distri-
bution of the ion in the analysis. In this experiment the peak
atomic density n ¼ 1.9 × 1012 cm−3 was high enough to
make three-body loss of the ion the dominant process

compared to the two-body charge-transfer rate. By studying
the dependence of the ion loss rate on atomic density (Krükow,
Mohammadi, Härter, and Hecker Denschlag, 2016), it was
possible to separate the two- and three-body processes,
providing the measurement of the charge-transfer rate
k2 ¼ 3.1ð6Þð6Þ × 10−13 cm3= s. At the same time, at the mean
ion energy of 2.2(9) mK the three-body rate coefficient was
k3 ¼ 1.04ð4Þð45Þ × 10−24 cm6=s. These values could be pre-
cisely extracted only if the loss of atom number due to elastic
collisions during themeasurementwas taken into account. This
analysis shows that three-body loss processes can be non-
negligible even at comparatively low atomic densities.

B. Quantum simulation

Analog quantum simulation concerns the emulation of the
physics of a system of interest, which is typically hard to
control, with another system (i.e., the simulator), which is
easier to control (Cirac and Zoller, 2012). An example is to
experimentally determine the evolution of a system which is
intractable to numerical analysis. The ultimate goal is to
possibly identify new states of matter that could then be useful
for technological applications. A prototypical example is the
long-standing search for high-temperature superconductivity.
Contrary to universal quantum computation, which aims at
developing a device capable to implement any unitary
operation on a large number of quantum bits (qubits), and
therefore to perform any many-body quantum Hamiltonian
evolution, analog quantum simulation is by definition not
universal and aims at specific many-body problems.
Separately, both trapped ions and cold atoms have proven to

be excellent platforms for quantum simulations of condensed-
matter physics (Blatt and Roos, 2012; Bloch, Dalibard, and
Nascimbene, 2012). Nonetheless, both systems have their
advantages and disadvantages, which limit their applicability
to investigate a broader range of models. For instance, cold
atoms in optical lattices encompass both bosonic and fer-
mionic statistics and are easy to scale up such that thousands
of atoms can be manipulated at the same time, but it is harder
to achieve long-range interactions and perform measurements.
On the other hand, trapped ions can be controlled and their
state can be read out superbly well. It is also possible to realize
any kind of interactions with them. At the same time, however,
scalability for trapped ions represents a great challenge and,
because of their strong localization when cooled down to form
a Coulomb crystal, quantum statistical effects are not visible
unless they are emulated by implementing an involved
sequence of quantum gates (Casanova et al., 2012). Hence,
the combination of trapped ions and cold atoms can allow one
to use the best features of the two worlds.
One particularly appealing idea for an ion-atom quantum

simulator is to mimic electrons in a solid with ultracold
fermionic atoms in interaction with an ion chain, which
represents the crystal structure as proposed by Bissbort
et al. (2013). Here the ion-atom interaction replaces the
Coulomb one between an electron and an ion in the natural
material. In Table VII we illustrate a comparison of different
energy and length scales between a typical solid state and the
combined ion-atom system. The parameters such as the ion
separation d, the energy, and length scale of the fermion-ion

FIG. 37. Dynamics of the decay of the atomic cloud under the
influence of the ion observed in the Rbþ þ Rb experiment.
(a) Remaining atom number as a function of time for ion energy
E ≈ 35 mK and initial atomic density nat ¼ 1011 cm−3. (b) The
same but for E ≈ 0.5 mK and nat ≈ 1.1 × 1012 cm−3. (c) Histo-
grams containing the data from (b). From Härter et al., 2012.
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interaction as well as the corresponding Fermi and phonon
energies are vastly different. On the other hand, the ratio d=R⋆
is comparable to solid-state systems, and therefore a band
structure in an ion-atom system can be expected. For instance,
for 171Ybþ ions separated by 1.1 μm interacting with a 6Li atom
one can have band gaps in the 10 kHz range. Further-
more, while in solid-state physics the Born-Oppenheimer
approximation is a natural way for studying electronic dynam-
ics (e.g., transport), in ion-atom systems with comparable
masses (e.g., 40Caþ þ 40K) this becomes inapplicable. Hence,
this scenario might enable one to investigate a new regime that
solid-state systems do not allow. We note that such interplay
between long-range impurity-crystal interactions and variable
mass ratios can also be obtained in systems of moving atoms in
crystals of polar molecules (Pupillo et al., 2008).
In the low-energy limit one can show that a Fröhlich-type

Hamiltonian can be derived, where the interaction describing
the coupling between the moving atoms and the phonons
excited in a homogenous ion chain has the form (Bissbort
et al., 2013)

Ĥai ¼
X

k;k0;s;D

λðs;DÞ
k;k0ffiffiffiffiffi
Ni

p α̂sĉ
†
kĉk0 þ H:c: ð85Þ

Here Ni is the number of ions, ĉk denotes the annihilation
operator for an atom in a Bloch state ϕkðxÞ of quasimomentum
k, and α̂s is the sth phonon annihilation operator. Further, the
atom-phonon coupling is given by

λðs;DÞ
k;k0 ¼ 4C4

X
n

vðsÞn − uðsÞnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2miΩn=Ni

p Z
d3rVnðrÞϕ�

kðrÞϕk0 ðrÞ; ð86Þ

whereVnðrÞ ¼ ðr − R̄jÞ · eD=jr − R̄jj6 andD ¼ x, y, z, where

uðsÞn and vðsÞn are the phononmode coefficients, andΩn is the bare
phononic angular frequency. Here r denotes the atom position,
whereby R̄j is the equilibrium position of the jth ion.
As an exemplary application of this system as a quantum

simulator, Bissbort et al. (2013) considered the Peierls-type
transition (Peierls, 1991). The basic idea here is that it can
be energetically favorable for a 1D crystal to undergo a
transition from a linear to period-doubled zigzag arrange-
ment when cooled below a critical temperature Tc. This is
also manifested by opening a gap in the band structure,
which means that the chain becomes an insulator. The
energy that the linear ion string gains, as it is distorted
into the zigzag configuration, is offset by decreasing the
energy of the fermions. A sample band structure calculation
for noninteracting 40K atoms near a 40Caþ ion string is
shown in Fig. 38(c), where a zigzag displacement of about
0.019R⋆ minimizes the total energy of the ion-atom system
with phonon frequency ωk¼π=d;x ≈ 2π × 60 kHz, ion spacing
d ¼ 2 μm ≈ 8R⋆, and atomic temperature Ta ¼ 15 nK ≈
0.15E⋆=kB. The phase diagram is shown in Fig. 38(b) for
varying temperature and ion-atom trap separation.
Interestingly, unlike the Peierls effect in solid-state materi-
als, the optimal filling that generates the largest Tc can be
larger than n ¼ 1=2; see Fig. 38(d). We note that such a
phase transition can also be quantum simulated with atomic
fermions interacting with bosons trapped in deep optical
lattices by employing Feshbach resonances for generating
large scattering lengths (Lan and Lobo, 2014). An interest-
ing future perspective of the electron-phonon emulation
with ion-atom systems is not only the investigation of the
impact of the ionic micromotion on the atom-phonon
coupling, but also the micromotion-induced coupling
amplification, similarly to the parametrically enhanced
superconductivity observed in compound solid materials
(Mitrano et al., 2016) and theoretically described by
phononic Floquet sidebands (Babadi et al., 2017;
Murakami et al., 2017).

TABLE VII. Comparison between a typical natural solid-state
system and an ion-atom quantum simulator. The fermionic mass
(electron and atom) and ionic core are denoted by mf and mi,
respectively. From Bissbort et al., 2013.

Solid state 6Li-174Ybþ 40K-40Caþ

Lattice spacing d (nm) 0.3–0.6 103–104 103–104

Length scale R⋆ (nm) 0.026 71 245
Energy scale E⋆ (kHz) 1013 166 2.1
d=R⋆ 10–20 14–140 4–40
mi=mf 104–105 29 1.0
Fermi energy (MHz) 108 0.02 0.02
Phonon energy (MHz) 106 0.01–10 0.01–10

FIG. 38. Experimentally tuning the ion trapping allows for the observation of a Peierls-like phase transition when atoms are confined in
an effective 1D dipole trap at a transverse separation Δr from the ion string. The discrete translational symmetry of the linear chain (a) is
spontaneously broken toward a zigzag pattern of the ions (c) and a band gap opens at k ¼ π=2d for the atoms. (b) At different atomic
fillings n (per ion) and below a critical temperature Tc, a phase transition occurs. From Bissbort et al., 2013.
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A further example in which a single ion can be used to
control the dynamics of a degenerate quantum gas is the
bosonic Josephson junction. In this setup a weakly interacting
ultracold Bose gas is confined in a double-well potential. The
most basic model of this system can be described in terms of
just two parameters: the on-site energyU and the hopping rate
J=ℏ. The mean-field theory predicts that, if the inequality

Λ ¼ UN=ð2JÞ > Λc ¼ 2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − zð0Þ2

q
cos½ϕð0Þ� þ 1g=zð0Þ2

is satisfied, the so-called macroscopic quantum self-trapping
occurs (Smerzi et al., 1997). Here zð0Þ is the initial population
imbalance and ϕð0Þ is the initial relative phase between the
condensates in the left and the right wells. This effect is due to
the interaction-induced detuning between the left and the right
well, which results in a strong suppression of the tunneling
between the two wells. This process can be controlled by
putting a tightly trapped ion in the center of the double well
(see Fig. 39), which changes the tunneling dynamics in a way
which depends on its internal state. As shown in Sec. II, the
short-range interaction contains a state-dependent part, which
sets the ion-atom scattering length and influences the two-
body wave function. In such a way the dynamics of the many-
body system can be controlled by manipulating the state of the
ion, e.g., with a laser field. This setting was investigated by
Gerritsma et al. (2012) at both the single-particle and the
many-body levels. The latter has been analyzed within the
two-mode approximation in which the bosonic quantum field
operator has been expanded into the time-independent single-
particle wave functions obtained as linear combinations of the
ground and first excited states of the double-well potential.
Furthermore, a protocol for entangling the motional state of
the condensate with the internal state of the ion was proposed.
A more detailed numerical analysis performed by using the
multiconfigurational time-dependent Hartree method for
bosons has confirmed the validity of the scheme for short
operation times (Schurer et al., 2016) with finite temperature
effects studied by Ebgha et al. (2019). At longer times,
however, an additional mode (i.e., single-particle orbital) was
found to be significantly populated, rendering the two-mode
description inadequate. We note that a similar level of control
over the dynamics can also be attained by controlling the
motional state of the ion (i.e., phonon number in the ion trap),
even though so far this analysis has been carried out at the
single atom level only (Joger, Negretti, and Gerritsma, 2014).

The bosonic Josephson junction can be seen as a building
block of a larger system in which an array of tightly trapped
ions is used to control the dynamics of atoms in an optical
lattice, e.g., by manipulating the ion internal state and there-
fore the atom hopping, as discussed previously. The ions can
be addressed individually, which creates a unique opportunity
of engineering the Hamiltonian of the atoms in a nontrivial
way, in both space and time. Negretti et al. (2014) showed
that, for an infinitely long and static ion chain, the ion-atom
interaction forms a periodic potential for the atoms and their
dynamics is described by an extended Hubbard Hamiltonian
of the form

Ĥ ¼ −
X
k

Ĵkb̂
†
kþ1b̂k þ

1

2

X
k

Ûkn̂kðn̂k − 1Þ þ
X
k

ϵkn̂k; ð87Þ

where Ĵk ¼ J↓;kj↓kih↓kj þ J↑;kj↑kih↑kj, Ûk ¼P
α;β¼↑;↓Uα;β;kjαkβkþ1ihαkβkþ1j with j↑ki and j↓ki being

the internal states of the ion at site k. Here both the hopping
Ĵk and the on-site interaction Ûk are replaced by operators,
because of the aforementioned state dependence. Although
similar Hamiltonians have been derived for other systems,
especially for ultracold atoms in optical lattices, the one given
by Eq. (87) results from the admixture of both s-wave and
p-wave interactions among the scattering centers (the ions)
and the moving atoms. With nondipolar neutral atoms strong
p-wave interactions are difficult to engineer, as they require
p-wave Feshbach resonances. Hence, this offers additional
controllability to the ion-atom system with respect to neutral
atomic ones. In particular, the possibility to independently
control the hopping and the on-site terms via optical control of
the ion internal state is an interesting alternative to neutral
atom systems, where more elaborate schemes have been
devised to engineer such state-dependent couplings. This
enables the exploration of the physics of lattice models and
entanglement generation between the moving particles and the
scatterers in such hybrid systems similar to Ortner et al.
(2009). Furthermore, we note that the Hamiltonian (87)
resembles the one of an atomic ensemble in interaction with
a field cavity mode. Such an interaction enables cavity-
mediated long-range atom-atom interactions (Maschler and
Ritsch, 2005). In the ion-atom system considered here, the
quantum potential is provided by the ion-atom interaction
where the atomic backaction on the quantum lattice potential
may generate ion-atom entanglement via phonons (Bissbort
et al., 2013; Joger, Negretti, and Gerritsma, 2014). In addition
to this, we note that with this setup one can also study the
analog of a single atom transistor (Micheli and Zoller, 2006),
where one ion of the chain can eventually suppress the atomic
tunneling via the state-dependent ion-atom interaction, as well
as quantum simulation of lattice gauge models. Indeed, as
shown by Dehkharghani et al. (2017), by engineering an
energy offset in the double well of the kth atom resonant to the
Rabi frequency coupling the two ion internal states, one can
shown that, within the rotating-wave approximation, the
hopping term in Eq. (87) can be recast into Jzkb̂

†
kσ̃

þ
k;kþ1b̂kþ1 þ

H:c: with Jzk ¼ ðJ↑;k − J↓;kÞ=2, which has the desired local
gauge invariance. Here σþ ¼ jþih−j with j�i being the
eigenstates of the Pauli matrix σ̂x, whereas j↑i and j↓i are

FIG. 39. Sketch of the atomic bosonic Josephson junction
controlled by the internal spin state of a tightly trapped ion
(large blue sphere).
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the eigenstates of σ̂z. Such an approach to quantum simulation
of lattice gauge models can offer interesting advantages
compared to purely neutral settings (D. Banerjee et al.,
2012), where the boson-boson and fermion-boson interactions
are chosen to be of the same order to fulfill gauge invariance.
We conclude by mentioning that an exciting research

direction with the ion-atom system is the quantum simulation
of the Fermi and the Bose polarons, namely, an impurity in
either a fermionic or a bosonic quantum bath, respectively; see
Sec. II.E. Polarons are attracting increasingly large interest in
the ultracold quantum matter community (Casteels, Tempere,
and Devreese, 2013; Levinsen, Parish, and Bruun, 2015; Peña
Ardila and Giorgini, 2016; Hu et al., 2016; Jørgensen et al.,
2016; Schmidt, Sadeghpour, and Demler, 2016; Shchadilova
et al., 2016; Parisi and Giorgini, 2017; Ashida et al., 2018;
Camargo et al., 2018; Guenther et al., 2018; R. Schmidt et al.,
2018) as the simplest example of nontrivial quantum field
theory. In this arena, ion-atom systems could provide new
insight into the problem, especially in the strong coupling
regime (Tempere et al., 2009; Casteels, Tempere, and
Devreese, 2011; Grusdt et al., 2017; Schurer, Negretti, and
Schmelcher, 2017), as well as allowing one to study the effects
of long-range interactions.

C. Quantum computation

An important motivation for the interest in ultracold
systems of trapped atoms and ions resides in their possible
applications to quantum information processing. Among
many possible physical implementations of the quantum
computational schemes (Cirac and Zoller, 1995; Loss and
DiVincenzo, 1998; Barends et al., 2014, 2016; Nigg et al.,
2014; Zu et al., 2014; Debnath et al., 2016), hybrid systems of
ultracold atoms and ions offer an attractive platform, poten-
tially allowing one to combine the long coherence times of
neutral atoms with the short gate-operation times for charged
particles due to the relatively strong interactions.
One of the possible setups for quantum computation with

ultracold atoms and ions is presented schematically in Fig. 40
(Doerk, Idziaszek, and Calarco, 2010). Here the atoms are
stored in an optical lattice in a Mott insulator phase such that
each lattice site is occupied by exactly one atom. One movable

ion confined in a rf trap is used as a read or write head to create
long-distance entanglement between pairs of atoms and to
perform quantum gates. The realization of the quantum gate is
based on the internal state sensitive interaction between a
single atom and a single ion.
By approximating the trapping potentials as harmonic, the

spatial part of the system is effectively described by the
Hamiltonian of Eq. (58). The qubit states are encoded in
different hyperfine states of the atom and the ion, which in
general provides state-dependent dynamics as long as the
short-range phases (scattering lengths) are different for differ-
ent scattering channels representing internal states.
The idea behind the quantum gate can be understood by

considering the adiabatic dynamics and the correlation dia-
grams like Figs. 19 and 41, connecting the eigenstates at small
and large trap separations. The scheme is based on the
adiabatic transfer from an initial oscillator state Ψini to a
molecular state Ψmol, and back to the initial state (see Fig. 41),
which is achieved by variation of the relative trap distance
dðtÞ. During the transfer process each logical basis state
acquires a different phase, since the energies of molecular
states depend on the channel; see Fig. 41. The particular shape
function dðtÞ allowing for perfect gate operation without
losses can be found using optimal control algorithms (Doerk,
Idziaszek, and Calarco, 2010). For the specific system of the
135Baþ ion and the 87Rb atom, the gate operation of 346 μs at
F ¼ 0.999 fidelity has been predicted (Doerk, Idziaszek, and
Calarco, 2010). In this scheme, radiative charge-transfer
losses as well as spin changing collisions are detrimental
since they lead to occupation of states which are outside the
computational subspace.
This model was based on neglecting the micromotion

effects and center-of-mass-relative motion coupling. The
validity of these approximations was studied in detail by
Nguyên et al. (2012) within the Floquet framework. They
found multiple avoided crossings with small energy gaps in
the quasienergy spectrum below the critical separation,
indicating that the proposed scheme would need to be done
on longer timescales in order to avoid unwanted excitations.

FIG. 40. Concept for quantum computation with atoms and
ions: Atoms are prepared in an optical lattice in a Mott insulator
phase. A movable ion is trapped in a radio-frequency trap. From
Doerk, Idziaszek, and Calarco, 2010.
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FIG. 41. Energy spectrum for the 135Baþ ion and the 87Rb atom
with the singlet and triplet scattering lengths: as ¼ 0.90 R⋆ and
at ¼ 0.95 R⋆, respectively. The left panel shows the complete
diagram for the j11i channel, while the right panel presents the
close-up around d ¼ 0.6 R⋆ for all the channels of the computa-
tional basis. Small differences between channels that can be
observed are the basis for realizing the ion-atom phase gate. From
Doerk, Idziaszek, and Calarco, 2010.
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The micromotion problem can be circumvented if the atom
and ion are kept far enough apart to avoid the couplings. If
their interaction is sufficiently strong, the gate implementation
should still be possible. For this reason, Secker et al. (2016)
investigated the case where the atom is dressed with the
Rydberg state, which enhances its polarizability and makes
the interaction stronger by many orders of magnitude. This
enables the realization of the quantum gate of the Mølmer-
Sørensen type (Sørensen and Mølmer, 1999) with ms time-
scales and high fidelity, even when micromotion and motional
state imperfection are taken into account.

D. Probing quantum gases

Another interesting application of the ion-atom systems is
related to precision measurements. In particular, the ion can be
used as a tool for detecting the spatial density profiles as well
as density-density correlations and single-particle Green’s
functions of quantum degenerate atomic gases with the aim
of inferring the nature of its many-body quantum state. Such
measurements can be useful for the development of schemes
for the preparation of exotic quantum phases.
The first steps in this direction have already been taken by

performing measurements of the ion loss rate in different
regions of the atomic cloud (Zipkes, Palzer, Ratschbacher,
Sias, and Köhl, 2010), providing an estimate of the atomic
density. A similar measurement was demonstrated by Schmid,
Härter, and Hecker Denschlag (2010), where the density
profile for a thermal, partially condensed, and an almost pure
condensate has been directly measured by looking at the
number of remaining atoms as a function of the ion position
relative to the atom trap center. As Fig. 42 clearly shows all
regimes are well distinguishable and in good agreement with
theoretical models.
Given the high controllability of the ion motion in a Paul

trap, the coupling of a single ion to the atomic quantum system
can even allow the spatial resolution to reach the nanometer
scale. For instance, by assuming that atoms with different spin

states jσi trapped in an optical lattice are prepared in some
many-body state jΨ0i, the following protocol proposed by
Kollath, Köhl, and Giamarchi (2007) can be implemented.
First, the ion in the state jii is brought close to the jth lattice
site that we want to investigate. A Raman pulse is then
applied, coupling the ion-atom state jaσj ; ii to the weakly
bound molecular ion jaσj þ ii. The proper Hamiltonian

describing this process is Ĥint ¼
P

σΩσM̂
†
σ ÎĉMσ ;j þ H:c:,

where M̂σ and Î denote the annihilation operators for the
molecular ion and the atomic ion, respectively, whereas Ωσ

is the effective two-photon Rabi frequency and ĉσ;j is the
annihilation operator of an atom in the spin state jσi at the jth
lattice site. The population of the molecular state is simply
given by hPσM̂

†
σM̂σi ¼

P
σ sin

2ðΩσδtÞhn̂σ;ji, where δt is the
pulse duration. The molecular ion can be detected, e.g., by
measuring the oscillation frequency in the Paul trap. Such a
measurement process (photoassociation and detection) would
take at least several hundred μs. Typical coherence times of a
quantum gas experiment are on the 100 ms scale so tens of
lattice sites could be measured sequentially.
A similar procedure with multiple ions could be utilized for

density-density correlation measurements. Besides this, by
using more elaborated sequences of Raman pulses with
appropriated timings δt, one could in principle measure the
difference ΔhM̂†

σM̂σi corresponding to two separate molecule
formations. As can be analytically shown (Kollath, Köhl,
and Giamarchi, 2007), this quantity is proportional to the
temporal correlation function hĉ†σ;jðtÞĉσjð0Þi (i.e., the single-
particle Green’s function), which reflects the nature of the
system excitations. By computing the Fourier transform of
hĉ†σ;jðtÞĉσjð0Þi, one could in principle distinguish between
different many-body quantum phases. In Fig. 43, we display
as an example the Fourier transform of an s-wave and a
d-wave superconducting state, which exhibits a different
behavior at ω ¼ Δ0 which is the gap frequency. Thereby,
such a measurement enables the understanding of the structure
of the corresponding order parameter as well as the determi-
nation of the energy gap ℏΔ0.
The scheme can also be adapted to measurements of the

local single-particle energy distribution of a degenerate Fermi
atomic gas. Sherkunov et al. (2009) showed that when using
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FIG. 42. The number of remaining 87Rb atoms as a function of
the 87Rbþ ion position relatively to the trap center: (a) thermal
cloud, (b) partially condensed cloud, and (c) an almost pure
condensate. The solid lines correspond to fits, where the ion
energy and atom temperature have been used as free parameters.
From Schmid, Härter, and Hecker Denschlag, 2010.
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FIG. 43. Fourier transform of the temporal single-particle
Green’s function hĉ†σ;jðtÞĉσjð0Þi for an s-wave and a d-wave
superconductor. From Kollath, Köhl, and Giamarchi, 2007.

Michał Tomza et al.: Cold hybrid ion-atom systems

Rev. Mod. Phys., Vol. 91, No. 3, July–September 2019 035001-44



the level scheme displayed in Fig. 44 (left panel), the photo-
association rate of an atom and an ion is given by

ΓðR; EÞ ¼ ð2maÞ2=3
3π

R3
TF

Z
dϵ

ffiffiffi
ϵ

p
GðE; ϵÞnσðϵ;RÞ; ð88Þ

where

GðE; ϵÞ ¼ γ2Ω2ðϵÞ
ðδ2 − η − EÞ2 þ γ22=4

: ð89Þ

Here RTF denotes the Thomas-Fermi radius of the gas in a
harmonic trap, E is the atom kinetic and ion trap energy of the
combined (not molecular) atom and ion state j0i, and nσðϵ;RÞ
is the momentum distribution of the atoms at the position R
with energy ϵ ¼ p2=ð2maÞ and with spin index σ. The
effective two-photon Rabi frequency Ω2ðϵÞ ¼ Ω1ðϵÞΩ2=δ1
is proportional to the corresponding Frank-Condon factors.
The latter rely on the atom and ion wave functions and
therefore on the initial incoming atom energy ϵ. The Rabi
frequencies Ω1;2 are also proportional to the laser powers of
the two light beams used to perform the transitions from the
initial ion-atom state j0i to the intermediated excited molecu-
lar state j1i and from this to the final target molecular ground
state j2i. By choosing properly the detunings δ1;2 of the two
laser beams one can perform the transition j0i → j2i with
negligible population of the state j1i (i.e., only virtual
transitions), whose lifetime is γ−11 . Besides this, the interaction
of the laser fields with the ion-atom system results in an
optical Stark shift η ¼ Ω2

2=δ1 as well as a broadening of the
molecular ground state γ2 ¼ Ω2

2γ1=δ
2
1. Here it has been

assumed that Ω1 ≪ Ω2 so that the level shift of the state
j0i can be neglected. In Fig. 44 (right panel) the photo-
association rate in different regimes of the Fermi gas is
illustrated (see caption of Fig. 44 for details). By fitting the
measured photoassociation rate to the various theoretical

models, it should be possible not only to extract the single-
particle energy distribution nσ , but also to determine the gas
energy gap as a function of the position R in order to monitor
the system state as it is tuned through the BEC-BCS crossover.
While the schemes previously described could also be

implemented with a neutral impurity, the excellent resolution
is essentially owed to the controllability of the ion motion in
Paul traps. We note that in the case of a Bose condensate, the
spontaneous capture process with the rate of ∼600 s−1 (Côté,
Kharchenko, and Lukin, 2002) would compete with the
photoassociation rate previously discussed. In the case of
Fermi statistics this process can be safely neglected.
A recent numerical study of a highly localized dissipative

impurity, resembling an ion, interacting with a quasi-1D
ensemble of bosonic atoms described by the Bose-Hubbard
model and treated as an open Markovian quantum system has
demonstrated how the atom loss due to the local impurity can
be used to probe and manipulate the properties of the many-
body quantum state (Barmettler and Kollath, 2011). For
example, it was shown how to measure the local density of
the atomic system and study impurity-induced excitations
thereby suggesting a decoupling between the two parts of the
bosonic system at the impurity location.

VI. FORMATION AND APPLICATIONS OF COLD
MOLECULAR IONS

In this section, we present theoretical and first experimental
studies of the formation of cold molecular ions in cold hybrid
ion-atom systems, both spontaneous as well as controlled with
external fields. We also report on the progress in sympathetic
cooling of molecular ions and their applications.

A. Spontaneous radiative association

In Sec. II we showed that the radiative association and
charge transfer are the main channels of radiative losses for the
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FIG. 44. Left panel: The Raman level scheme used for coupling an atom and an ion with initial energy E such that a stable ion-atom
molecule can be prepared with the aim of inferring the single-particle energy distribution of a Fermi gas. For further details see the text.
Right panel: Photoassociation rate for an ion in an atomic Fermi gas as a function of the detuning δ̃ ¼ δ2 − η for different regimes of the
gas: Free fermions at T ¼ 0 (dash-dotted line), BCS regime at T ¼ 0 for k0Fa

aa
s ¼ −0.5 (energy gap Δ0 ¼ 0.047ϵF) with k0F being

the Fermi wave number and aaas the scattering length (dashed line), the unitarity limit at T ¼ 0 (solid line) and at T ¼ Tc (dotted line).
The major peak is due to the breaking of fermionic pairs of atoms, while the minor one is attributed to thermally excited atoms. The inset
shows the photoassociation rate density Gðϵ; EÞ (at a fixed initial ion energy) for the transition j0i → j2i for δ2 ¼ 2.5δ1. The low peak
is determined by the width γ2 and can be controlled by the laser parameters (see text), whereas the maximal peak occurs when E ¼ δ̃.
From Sherkunov et al., 2009.
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ground-state alkali-metal and alkaline-earth-metal ion-atom
systems if the charge-transfer process is energetically allowed.
These losses can jeopardize applications of ion-atom systems
in quantum simulation and computation. However, the radi-
ative association can be used to produce cold molecular ions
and related chemical reactions can be an interesting subject of
studies on their own.
The formation of molecular ions in the spontaneous

radiative association is governed by the Einstein coefficients
given by Eq. (36). They are proportional to the third power of
the transition energy and the second power of the vibrationally
averaged transition electric dipole moment. Since the tran-
sition electric dipole moment decays exponentially with the
ion-atom distance, as discussed in Sec. II, the vibrationally
averaged transition electric dipole moment is a result of two
competing factors. When the binding energy of produced
molecular ions is increasing, the Franck-Condon overlap
between the entrance scattering state and the getting smaller
molecular state is decreasing. At the same time, the value of
the relevant transition electric dipole moment function is the
largest at the small internuclear distance. As a result the
association rates are the largest to relatively deeply bound
vibrational states in the middle of the potential well.
Figure 45 presents the exemplary theoretical state-resolved

radiative association rate constants for an Ybþ ion colliding
with a Li atom in the A1Σþ electronic state (Tomza, Koch, and
Moszynski, 2015). The formation of a LiYbþ molecular ion in
the X1Σþ electronic state with vibrational binding energy
of around 1200 cm−1 is the most probable. The formation
of weakly bound molecular ions, as mentioned previously,
is suppressed in a characteristic way. The formation of
deeply bound molecular ions with binding energy larger than
2000 cm−1 (the depth of the X1Σþ state is over 9000 cm−1) is
suppressed by the presence of the repulsive wall of the A1Σþ

potential at an internuclear distance significantly larger than
the minimum position of the X1Σþ potential (cf. Fig. 2).
Comparison of the calculated rotationally resolved rate

constants for two different collision energies reveals that
already at a temperature of 10 μK p-wave collisions are
important and result in the formation of molecular ions in a
few rotational states.
Figure 46 shows the exemplary transition electric dipole

moments between vibrational levels of the X2Σþ ground and
A2Σþ excited electronic states of the LiRbþ molecular ion
hΨvjdðRÞjΨv0 i (Tomza and Żuchowski, 2017). Such transition
dipole moments govern both spontaneous radiative associa-
tion and photoassociation followed by spontaneous or stimu-
lated stabilization, which will be discussed in the next section.
The picture we present is characteristic for all ion-atom
systems when electronic states related to two well-separated
thresholds with different charge arrangements are considered.
The transition probability between weakly bound vibrational
levels of molecular ions is strongly suppressed.
In Secs. II and V we showed that the spontaneous radiative

association leading to the formation of molecular ions is
expected to be the main channel of radiative losses in the case
of cold collisions of ground-state alkali-metal and alkaline-
earth-metal ions and atoms. If the ions or atoms are elec-
tronically excited or the entrance electronic state is not well
separated from other states, the relative probability of asso-
ciation and charge transfer is system specific and nonradiative
charge transfer can dominate over radiative processes. The
experimental investigations of the molecular ions formation
were already discussed in Sec. V in the context of ion-atom
reactive collisions with the following molecular ions observed
as products of cold collisions between respective ions and
atoms: RbCaþ (Hall et al., 2011; Hall, Eberle et al., 2013),
RbBaþ (Hall, Aymar et al., 2013), CaYbþ (Rellergert et al.,
2011), and CaBaþ (Sullivan et al., 2012).

B. Photoassociation

Cold molecular ions can also potentially be produced using
photoassociation methods which have been successfully
employed to produce ultracold neutral molecules in both
the excited and the ground states (Jones et al., 2006). In
neutral systems the atom pairs are associated by exciting them

FIG. 45. Radiative association rate constant vs binding energy
of the final rovibrational level in the X1Σþ electronic ground state
for an Ybþ ion colliding with a Li atom in the A1Σþ electronic
state plotted at a temperature corresponding to (left panel) 100 nK
and (right panel) 10 μK. Rates to states with different rotational
angular momentum l are presented using different symbols and
colors. From Tomza, Koch, and Moszynski, 2015.

Σ

 0  10  20  30  40  50  60  70

v’’ (X2Σ+)

 0

 10

 20

 30

 40

 50

 60

v
’ (

A
’2 Σ+

)

 0.001

 0.01

 0.1

 1

FIG. 46. Transition electric dipole moments between vibrational
levels of the X2Σþ ground and A2Σþ excited electronic states of
the LiRbþ molecular ion. Adapted from Tomza and Żuchowski,
2017.
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with a laser field from a scattering state to a bound molecular
level below an excited-state dissociation threshold. Both
strong dipole allowed transitions related to the strong atomic
transition at the dissociation threshold in alkali-metal atoms
and weak dipole-forbidden transitions related to the weak
intercombination line transition in alkaline-earth-metal atoms
have been employed in neutral systems. Molecules produced
in excited states can spontaneously decay to the ground state
or can be state selectively transferred to the ground state by
laser-stimulated transitions.
In general, similar formation schemes can be employed in

ion-atom systems with two distinct differences. First of all, the
colliding ion-atom pairs can be in an excited electronic state
with respect to the charge-transfer process allowing for the
photoassociation (stimulated emission) directly stabilizing the
molecular ions down to the electronic ground state. Second of
all, the transition dipole moments to states related to the
charge-transfer thresholds are strictly vanishing with increas-
ing internuclear distance, suppressing the probability of
exciting weakly bound molecular ions to a much larger extent
than in the case of the intercombination line transition
(cf. Fig. 46).
Tomza, Koch, and Moszynski (2015) theoretically inves-

tigated the photoassociation rates for both the previous
mentioned scenarios in ultracold collisions of Ybþ ions and
Li atoms. Figure 47 presents the results for the photoassoci-
ation via stimulated stabilization directly to molecular ions in
the electronic ground state A1Σþ → X1Σþ (upper panel) and

the photoassociation to the lowest excited electronic states
a3Σþ → b3Πþ c3Σþ (lower panel). The shape of the spectra
is typical for photoassociation in ion-atom systems, when the
transitions to states related to charge-transfer thresholds are
used, i.e., the rates for the formation of weakly bound
molecular ions are suppressed and the formation of relatively
deeply bound molecular ions in the middle of the potential
well is the most probable. Additionally, the overall shape of
the photoassociation spectrum for the singlet symmetry is, as
expected, very similar to the spontaneous radiative association
spectrum presented in Fig. 45 because they are governed by
the same transition dipole moments.
Gacesa et al. (2016) theoretically studied the optical path-

ways for the formation of cold ground-state NaCaþ molecular
ions as schematically presented in Fig. 48. They considered
photoassociation of Caþ ions and Na atoms colliding in the
A1Σþ electronic state into weakly bound molecular levels in
the E1Σþ excited electronic state. Because the charge con-
figuration for atomic thresholds related to the A1Σþ and E1Σþ

electronic states is the same, the transition electric dipole
moments do not vanish at large distances and this photo-
association is of the same nature as for neutral mixtures with
significant formation rates into weakly bound molecular
levels. Formed molecular ions spontaneously decay to either
the ground electronic state or an intermediate state from which
the population can be transferred to the ground state via an
additional optical excitation. The efficiency of a two-photon
scheme, via either the B1Σþ or C1Σþ potential, is sufficient to
produce significant quantities of ground-state NaCaþ molecu-
lar ions.
Rakshit and Deb (2011) theoretically considered the photo-

associative formation of LiBeþ molecular ions, whereas
Sardar et al. (2016) explored the formation of ground-state
LiCsþ molecular ions by photoassociation and stimulated
Raman adiabatic passage.
Controlled and selective photoassociation of molecular

ions from a cold mixture of ions and atoms has not yet been
realized experimentally. However, as mentioned in the pre-
vious section, the control of spontaneous radiative association
by exciting ions with a laser field was investigated by

(a)

(b)

FIG. 47. Photoassociation rate constants into rovibrational
levels of the X1Σþ electronic ground state for collisions of
174Ybþ ions with 6Li atoms in the A1Σþ state (upper panel) and
into rovibrational levels of the c3Σþ and b3Π excited electronic
states for collisions in the a3Σþ state (lower panel). From
Tomza, Koch, and Moszynski, 2015.
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Michał Tomza et al.: Cold hybrid ion-atom systems

Rev. Mod. Phys., Vol. 91, No. 3, July–September 2019 035001-47



Hall et al. (2011). Sullivan et al. (2011) observed the formation
of 40Caþ2 molecular ions via photoassociative ionization of
ultracold atoms in a hybrid 40Ca magneto-optical and ion trap
system. Additionally, Jyothi et al. (2016) studied the possibility
of simultaneous trapping of 85Rbþ2 molecular ions (formed by
photoionization of photoassociated Rb2 molecules) with ultra-
cold 85Rb atoms in a magneto-optical trap and found that the
photodissociation of Rbþ2 molecular ions by the cooling light of
the MOT is the dominant mechanism for the loss of trapped
molecular ions. This mechanism is predicted to be present in all
alkali-metal molecular ions and thus implies that the use of a
far-detuned optical dipole trap for ultracold atoms instead of a
MOT is needed to produce and trap such molecular ions with
atoms for a long time.

C. Magnetoassociation

In principle, magnetically tunable Feshbach resonances
described in Sec. III.A can be used not only to tune the
scattering properties of ion-atom systems but can also be
employed to form weakly bound molecular ions using
magnetoassociation in a similar manner as realized in neutral
ultracold alkali-metal-atom gases (Köhler, Góral, and
Julienne, 2006; Chin et al., 2010). Potentially both an
adiabatic time-dependent sweep of the magnetic field across
the resonance and rf field association may work. However, to
enable magnetoassociation the ultracold s-wave regime of
ion-atom collisions has to be achieved, which implies that an
optical trap rather than a Paul trap should be used.
Additionally, the impact of the Landau quantization effects
(the Lorenz force) in ultracold ion-atom collisions (Simoni
and Launay, 2011) on the magnetoassociation has to be
investigated, especially at stronger magnetic fields. Thus,
significant technical developments and more detailed theo-
retical studies are still needed to anticipate the formation of
ultracold weakly bound molecular ions using the magneto-
association and their subsequent transfer to deeply bound
vibrational states using the stimulated Raman adiabatic
passage as it is realized for neutral molecules (Quemener
and Julienne, 2012).

D. Sympathetic cooling

Sympathetic cooling, in which cold particles of one type
cool particles of another type via elastic collisions, is a very
efficient method for cooling trapped mixtures of different ions
(Larson et al., 1986) and is successfully used to cool mixtures
of neutral atoms (Myatt et al., 1997). It is also believed to
work for some mixtures of neutral molecules and atoms
(Wallis and Hutson, 2009). The sympathetic cooling of
translational motion of ions by cold atoms in hybrid ion-
atom systems using a Paul trap is limited by micromotion as
described in Sec. IV.C.
Translationally cold molecular ions can be produced by

sympathetic cooling in mixtures with laser-cooled atomic ions
(Willitsch, Bell, Gingell, and Softley, 2008). Low-energy
collisions between ions are dominated by the Coulomb
interaction which does not couple to the internal degrees of
freedom. Therefore sympathetically cooled molecular ions
can be rotationally and vibrationally warm. In such a scenario,

internally warm samples can be further cooled using optical
pumping schemes as demonstrated by Schneider, Roth et al.
(2010) and Staanum et al. (2010). Molecular ions can also be
prepared in selected rotational and vibrational states by
(2þ 1) resonance-enhanced multiphoton ionization or thresh-
old photoionization and cooled down translationally without
heating internal motion (Tong, Winney, and Willitsch, 2010;
Tong, Wild, and Willitsch, 2011). However, even for state-
selectively produced molecular ions, if they have an electric
dipole moment, the blackbody radiation can induce popula-
tion redistribution and the need for returning population to the
rovibrational ground state by optical pumping (Staanum et al.,
2010; Deb et al., 2014). Another possibility is the use of cold
or ultracold atoms to sympathetically cool molecular ions
internal degrees of freedom to the rovibrational ground state
(Hudson, 2009, 2016).
Rellergert et al. (2013) experimentally demonstrated sym-

pathetic vibrational cooling of translationally cold BaClþ

molecular ions immersed into an ultracold gas of Ca atoms.
The quenching of the molecular ion vibrational motion by
ultracold atoms was observed at a rate comparable to the
classical Langevin rate, being over 4 orders of magnitude
more efficient than traditional sympathetic cooling schemes.
Stoecklin et al. (2016) theoretically explained this high
efficiency by performing ab initio calculations and they
suggested that there exists a large class of systems exhibiting
such an efficient vibrational cooling provided large polar-
izability of atoms and strong binding of molecular ions.
Efficient rotational cooling of Coulomb-crystallized MgHþ

molecular ions by a helium buffer gas at cryogenic temper-
atures was realized by Hansen et al. (2014). It was achieved
with a very low buffer-gas collision rate (4 to 5 orders of
magnitude lower than in typical buffer-gas cooling settings),
opening the way for translational sympathetic sideband cool-
ing and investigations of laser-induced coherent processes
with molecular ions.
In the context of buffer-gas cooling, Hauser, Lee et al.

(2015) measured absolute scattering rates for rotational
state-changing cold collisions of OH− ions with helium at
cryogenic temperatures. The full quantum control of the
rotationally inelastic collisions was achieved by developing
a method to manipulate molecular quantum states by non-
resonant photodetachment. Reasonable agreement without
adjustable parameters was found between experiment and
quantum scattering calculations.
Rotational or vibrational quenching in cold and ultracold

collisions of molecular ions with neutral atoms have been
studied theoretically for several ion-atom systems in the
context of cold or ultracold studies: Heþ2 þ He (Bodo et al.,
2002), Nþ

2 þ He (Stoecklin and Voronin, 2005; Guillon,
Stoecklin, and Voronin, 2007, 2008a, 2008b), OH− þ He
(González-Sánchez et al., 2006), OHþ þ He (González-
Sánchez, Bodo, and Gianturco, 2007), OH− þ Rb
(Gonzalez-Sanchez et al., 2008; Tacconi and Gianturco,
2009b; González-Sánchez, Carelli et al., 2015; González-
Sánchez, Gianturco et al., 2015), CHþ þ He (Hammami et al.,
2008; Stoecklin and Voronin, 2008), LiH− þ He (López-
Durán, Tacconi, and Gianturco, 2009; Gonzlez-Snchez,
Gianturco, and Wester, 2016), NOþ þ He (Stoecklin and
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Voronin, 2011), MgHþ=BaHþ=SiOþ þ He (Pérez-Ríos and
Robicheaux, 2016), Hþ

2 =D
þ
2 þ He (Schiller et al., 2017), and

BaRbþ þ Rb (Pérez-Ríos, 2019). Similarly, the prospects for
sympathetic cooling of neutral molecules with atomic ions
were theoretically investigated for systems of Liþ þ D2

(Bovino, Bodo, and Gianturco, 2008), and Beþ=Mgþ=Caþ þ
OH (Robicheaux, 2014).
In addition, Yzombard et al. (2015) theoretically showed

that laser cooling of molecular anions can be feasible and
identified a number of potential candidates such as C−

2 or
BN−

2 , ZnO
− or LiF−2 . Realization of such a laser cooling of

molecular anions can open the way to sympathetic cooling of
other negatively charged atomic or molecular ions.

E. Cold chemistry

Using molecular ions instead of atomic ones in cold ion-
neutral systems provides a much larger number of possible
species combinations to be explored and opens the way
for investigating proper cold chemical reactions with rear-
rangement of atoms, which can be of interest in many areas
of chemistry ranging from organic and inorganic chemistry
to astrochemistry (McDaniel et al., 1970; Mikosch,
Weidemüller, and Wester, 2010).
The ion-neutral interactions have a longer-range character

as compared to neutral ones and ionic species can be
manipulated and detected on the single-particle level. This
can allow one to investigate chemical reactions with particle
densities of molecular ions much smaller and better controlled
than with neutral molecules. The ionic products of chemical
reactions can also be trapped thus opening the way for
measuring product-state distributions and state-to-state rates
(Tong et al., 2012; Heazlewood and Softley, 2015).
The first attempts to cold chemistry with molecular ions are

related to using multipole ion traps and cold He and H2 buffer-
gas cooling (Gerlich, 1995; Itano et al., 1995; Gerlich and
Borodi, 2009). For example, Otto et al. (2008) studied the
NH−

2 þ H2 → NH3 þ H− reaction at temperatures as low as
8 K and observed significant enhancement of the reaction rate
with decreasing temperature. Mulin et al. (2015) observed
isotope exchange in cold reactions of OH− with D2 and of
OD− with H2. Hauser, Lakhmanskaya et al. (2015) inves-
tigated complex formation and internal proton transfer of
OH− þ H2 complexes at low temperature.
Another approach is based on monitoring the decay of

laser-cooled ions in a Coulomb crystal colliding with velocity-
or state-selected molecules in a beam. Willitsch, Bell, Gingell,
Procter, and Softley (2008) studied chemical reactions
between Caþ ions and quadrupole-guided and velocity-
selected CH3F molecules at collision energies as low as
1 K. Chang et al. (2013) observed specific chemical reac-
tivities of 3-aminophenol conformers, spatially separated by
electrostatic deflection, with cold Caþ ions. They measured a
twofold larger rate constant for a more polar conformer as a
consequence of conformer-specific differences in the long-
range ion-molecule interaction potentials (different leading
long-range electrostatic coefficients Celst

2;1 for conformers with
different dipole moments). In a similar experiment, Kilaj et al.
(2018) observed different reactivities of H2O molecules in

para and ortho states in collisions with trapped diazenylium
ions. A state-controlled reaction between laser-cooled Caþ

ions and warm NO (Greenberg et al., 2018) or O2 (Schmid
et al., 2019) radical molecules was also investigated and the
control over the reaction rates by tuning of the excited-state
population of the laser-cooled Caþ ions was demonstrated.
The first experiments combining molecular ions with

ultracold atoms in hybrid traps were realized for the Nþ
2 þ

Rb and OH− þ Rb systems by Hall and Willitsch (2012) and
Deiglmayr et al. (2012), respectively. In the former, the
reactive collisions between sympathetically cooled molecular
ions and laser-cooled atoms in an ion-atom hybrid trap at
collision energies as low as 20 mK were investigated and a
strong dependence of the reaction rate on the internal state
of Rb atoms was found. Specifically, highly efficient charge
exchange, 4 times faster than the Langevin rate, was observed
with Rb in the excited 2P3=2 state. This observation was
rationalized by a capture process dominated by the charge-
quadrupole interaction and a near resonance between the
entrance and exit channels of the system; see Fig. 49.
In the latter experiment, OH− anions were trapped in an

octupole rf trap and Rb atoms in a magneto-optical trap. The
associative electron detachment process

OH− þ Rb → RbOHþ e− ð90Þ

was identified as the main loss mechanism and absolute rate
coefficients for this process were measured. The experimental
efforts for the OH− þ Rb system are accompanied by several
related theoretical works (Byrd et al., 2013; Kas et al., 2016,
2017; Midya et al., 2016; Tomza, 2017).
Recently, synthesis of mixed hypermetallic oxide BaOCaþ

from laser-cooled reagents in an cold ion-atom hybrid trap was
demonstrated (Puri et al., 2017). Cold barium methoxide ions
(BaOCHþ

3 ) were first prepared and then exposed to ultracold
Ca atoms. Mass spectral and theoretical analyses revealed a

0.0

11.0

11.5

12.0

12.5

13.0

E
n e

rg
y 

(e
V

)

 Rb ((5p)  2P3/2) 

Product channel 

Rb+ ((4p6) 1S0) + … 

Entrance channel 

N2
+ (X+ 2 g

+) + … 

- N2 (X 1 g
+)  

  N2 (G 3 u)  

  N2 (E 3 g
+)  

  - N2 (C 3 u)  

  N2 (F 3 u)  

  N2 (c  1 u
+)  

  N2 (o 1 u)  

  N2 (D 3 u
+)  

    N2 (C  3 u)  

 Rb ((5s)  2S1/2) 

FIG. 49. Total electronic energies of Nþ
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barrierless reaction pathway in which triplet-state Cað3PJÞ
atoms displace the methyl group. The reaction kinetics as a
function of collision energy over the range 0.005 to 30 K and
of individual Ca fine-structure levels were investigated and
compared favorably with calculations based on long-range
capture theory.
Cold and ultracold chemical reactions of molecular

ions with neutral atoms have also been theoretically studied
for few other molecular ion-neutral systems: MgHþ þ Rb
(Tacconi and Gianturco, 2009a), 3He4Heþ þ 4He (Bodo,
2009), HeHþ þ He (Bovino, Tacconi, and Gianturco,
2011), and Dþ þ H2 (Lara, Jambrina, Aoiz, and Launay,
2015; Lara, Jambrina, Launay, and Aoiz, 2015).

F. Precision spectroscopy

Cooling translational motion of atoms, ions, or molecules
reduces Doppler broadening of spectral lines, and cooling
their internal motion can bring them into a single quantum
state. All these significantly facilitate high accuracy spectro-
scopic measurements. Cold and ultracold molecules are
promising candidates for high precision measurements to
probe both electronic structure theory as well as fundamental
aspects of quantum physics such as the electron’s electric
dipole moment or the time variation of fundamental constants,
e.g., the electron-proton mass ratio and the fine-structure
constant (Carr et al., 2009). Molecular ions formed at ultralow
temperatures or cooled down via buffer gas or sympathetic
cooling have an additional advantage of possibly a long
storage time in a Paul trap.
The first precision spectroscopy and measurement of the

electron’s electric dipole moment through electron spin
resonance spectroscopy on the 180Hf19Fþ molecular ions in
their metastable 3Δ1 electronic state were demonstrated by
Loh et al. (2013) and Cairncross et al. (2017).
Electric-dipole-forbidden infrared transitions in cold

molecular ions were observed by Germann, Tong, and
Willitsch (2014). This measurement was enabled by the very
long interrogation times afforded by the sympathetic cooling
of individual quantum-state-selected molecular ions trapped in
a Coulomb crystal.
The high-sensitivity transitions for the precision measure-

ment of time variation of the proton-to-electron mass ratio
were theoretically identified, e.g., in Nþ

2 (Kajita et al., 2014)
and Oþ

2 (Hanneke, Carollo, and Lane, 2016) molecular ions.
The precision measurement of the rotational Lamb shift of
molecular ion’s rotational structure, while immersed in a
Bose-Einstein condensate, was theoretically proposed by
Midya et al. (2016), as described in Sec. II.E.
A larger number of precision measurement proposals and

experimental realizations can be expected when molecular
ions are routinely formed at or sympathetically cooled to low
or ultralow temperatures.

G. Laboratory astrochemistry

One of the early motivations to study cold ion-atom and
ion-molecule collisions, especially with hydrogen and helium
at cryogenic temperatures, was the astrochemical context.
Typical temperatures of the interstellar clouds are between a

few and several kelvins. For the collisions with very light
partners, like helium and hydrogen, these temperatures can
result in a similar number of only a few partial waves (similar
collision energy in units of E⋆) as for cold hybrid ion-atom
systems employing heavy alkali- and alkaline-earth-metal
ions and atoms operating at milikelvin temperatures. Thus,
the knowledge gained about cold collisions and especially
chemical reactions using cold hybrid ion-atom experiments
can be instructive for better understanding chemical trans-
formations of ions in space (Petrie and Bohme, 2007; Snow
and Bierbaum, 2008; Larsson, Geppert, and Nyman, 2012).
Surprisingly, a number of cations, but just a few molecular

anions, have been conclusively detected in the interstellar
space (Millar, Walsh, and Field, 2017). Precision spectroscopy
and collisional studies of cold molecular anions can shed new
light on their stability, properties of valence, and dipole-bound
excited states, which in turn can help to better understand their
abundance in the Universe.
The knowledge of rates for chemical reactions between

simple atoms, molecules, and ions present in different
astronomical environments is important for simulating and
understanding evolution of astronomical objects (Snow and
McCall, 2006; Smith, 2011; Wakelam et al., 2012; McElroy
et al., 2013). The state-selective measurements with selected
cold ion-neutral systems may provide necessary reactive
collisions rates with adequate accuracy.
Finally, many astronomical observations are based on the

identification of molecular lines in a broad range of wave-
lengths (Müller et al., 2001; Schöier et al., 2005). Precision
spectroscopy of molecular ions sympathetically cooled in
hybrid ion-atom traps may provide necessary spectra with
adequate accuracy.

VII. CONCLUSIONS AND OUTLOOK

Over the past ten years, cold hybrid ion-atom systems have
come a long way from a handful of pioneering experiments to
an established field of research. The capabilities as well as
technical limitations of currently used setups are now well
understood. Useful information about charged impurity
dynamics, inelastic collisions, and chemical reactions has
been obtained. At the same time, multiple theoretical propos-
als for implementations of quantum technologies have yet to
be realized. Here we describe some possible future directions
for the next generation of experiments.
Control of inelastic collisions.—The understanding of two-

body and three-body inelastic processes in ion-atom mixtures
is the first step toward controlling them. While it is possible to
choose systems in which radiative charge exchange is not
present (Tomza, 2015), it looks more appealing to be able to
control the collision rates with external fields, which requires
lowering the collision energy.
Reaching the s-wave limit.—In state-of-the-art experimen-

tal setups the ion-atom collisions take place at energies for
which many partial waves are involved. This is one of the
reasons for the lack of observation of scattering resonances
(e.g., Feshbach resonances), as contributions from different
partial wave channels cannot be tuned independently. To
achieve full control of the collisional properties it will be
necessary to reach the single partial wave limit. To this end, it
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is most convenient to work with combinations of heavy ions
and light atoms such as Ybþ þ Li. It is possible that novel
experiments which do not use the Paul trap will play an
important role in completing this task.
Realization of cold hybrid ion-atom systems without the

Paul trap.—As described in detail, Paul traps impose strong
limitations on the degree of control over the ion-atom system
due to the inherent micromotion. Moving to a purely optical
setup as described in Sec. IV.D would thus open new
opportunities, especially in the context of quantum engineer-
ing. This would require mastering the great experimental
challenge of keeping the ion in a shallow optical trap in the
presence of atoms for a long time.
Combining ions with Rydberg atoms.—Another strategy to

overcome the micromotion issues is to enhance the interaction
strength so that the ion and the atom can be kept away from
each other. This can be achieved by dressing the atoms with
Rydberg states (Secker et al., 2016, 2017). Rydberg excitation
of ions and exploring possibilities given by Rydberg mole-
cules can also open new research directions.
State-to-state chemistry.—After reaching the s-wave

regime and full control over quantum states of colliding
particles, the realization of controlled state-to-state chemical
reactions with detection of product-state distributions would
be the next step. This requires the development of new
methods of selective trapping and monitoring reaction prod-
ucts. On the other hand, universality of ion trapping and
sympathetic cooling can open the way for experiments with
p-block, transition-metal, or lanthanide ions.
More complex systems.—Cold ion-molecule systems and

molecular ions are of great interest from the chemical point of
view (in particular for astrochemical studies and chemistry of
atmospheres). Simple molecular ions are abundant in inter-
stellar clouds along with hydrogen molecules, and precise
knowledge of their reaction rates is crucial for our under-
standing of the evolution of the Universe. Especially, the
knowledge about molecular and atomic anions and their
chemical transformations is limited. Multiply charged atomic
and molecular ions are also completely unexplored in the
context of cold hybrid ion-atom systems.
Larger systems.—Periodic arrangements of both atoms and

ions in cold ion-atom systems are not yet well studied.
Combining cold ions with atoms in an optical lattice in the
context of quantum information storing and processing is still
awaiting experimental realization. Similarly, combinations of
atoms in an optical lattice and crystallized ions in one- or two-
dimensional arrays can bring many opportunities for interesting
quantum simulations (Schneider, Porras, and Schaetz, 2012).
Quantum technologies.—Finally, cold hybrid ion-atom

systems are also a candidate to be a platform for engineering
novel applications within emerging quantum technologies
especially in the context of quantum computation, simulation,
and sensing. Even though they are less advanced than other
practical technological solutions based on trapped ions or on
solid-state systems, the unique properties of cold hybrid ion-
atom systems can provide important proof-of-principle exper-
imental demonstrations and in some cases (see Sec. V.B)
enable the exploration of specific regimes that are not easily
accessible with other platforms.

ACKNOWLEDGMENTS

We are grateful to U. Bissbort, R. Côté, M. Deiss, M.
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Côté, R., V. Kharchenko, and M. D. Lukin, 2002, Phys. Rev. Lett. 89,
093001.
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Phys. Rev. A 94, 013407.

Gaj, A., A. T. Krupp, J. B. Balewski, R. Löw, S. Hofferberth, and T.
Pfau, 2014, Nat. Commun. 5, 4546.

Gao, B., 1998, Phys. Rev. A 58, 4222.
Gao, B., 2010, Phys. Rev. Lett. 104, 213201.
Gao, B., 2011, Phys. Rev. A 83, 062712.
Gao, B., 2013, Phys. Rev. A 88, 022701.
Gao, B., E. Tiesinga, C. J. Williams, and P. S. Julienne, 2005, Phys.
Rev. A 72, 042719.

Garcia, J. D., R. J. Fortner, and T. M. Kavanagh, 1973, Rev. Mod.
Phys. 45, 111.

Gerlich, D., 1995, Phys. Scr. T59, 256.
Gerlich, D., and G. Borodi, 2009, Faraday Discuss. 142, 57.
Germann, M., X. Tong, and S. Willitsch, 2014, Nat. Phys. 10,
820.

Gerritsma, R., A. Negretti, H. Doerk, Z. Idziaszek, T. Calarco, and F.
Schmidt-Kaler, 2012, Phys. Rev. Lett. 109, 080402.

Ghanmi, C., H. Berriche, and H. B. Ouada, 2006, J. Mol. Spectrosc.
235, 158.

Ghanmi, C., H. Berriche, and H. B. Ouada, 2007, Comput. Mater.
Sci. 38, 494.

Ghanmi, C., H. Bouzouita, H. Berriche, and H. B. Ouada, 2006, J.
Mol. Struct. THEOCHEM 777, 81.

Ghanmi, C., H. Bouzouita, N. Mabrouk, and H. Berriche, 2007, J.
Mol. Struct. THEOCHEM 808, 1.

Ghanmi, C., M. Farjallah, and H. Berriche, 2012, Int. J. Quantum
Chem. 112, 2403.

Ghanmi, C., M. Farjallah, and H. Berriche, 2017, J. Phys. B 50,
055101.

Gloger, T. F., P. Kaufmann, D. Kaufmann, M. T. Baig, T. Collath,
M. Johanning, and C. Wunderlich, 2015, Phys. Rev. A 92,
043421.

Gonzalez-Sanchez, L., M. Tacconi, E. Bodo, and F. Gianturco, 2008,
Eur. Phys. J. D 49, 85.

González-Sánchez, L., E. Bodo, and F. A. Gianturco, 2007, Eur.
Phys. J. D 44, 65.

González-Sánchez, L., F. Carelli, F. Gianturco, and R. Wester, 2015,
Chem. Phys. 462, 111.

González-Sánchez, L., F. A. Gianturco, F. Carelli, and R. Wester,
2015, New J. Phys. 17, 123003.

González-Sánchez, L., F. A. Gianturco, and R. Wester, 2016, J. Phys.
B 49, 235201.

González-Sánchez, L., F. Marinetti, E. Bodo, and F. A. Gianturco,
2006, J. Phys. B 39, S1203.

Goodman, D. S., I. Sivarajah, J. E. Wells, F. A. Narducci, and W.W.
Smith, 2012, Phys. Rev. A 86, 033408.

Goodman, D. S., J. E. Wells, J. M. Kwolek, R. Blümel, F. A.
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Pérez-Ríos, J., and C. H. Greene, 2015, J. Chem. Phys. 143, 041105.
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