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2 ICFO - Institut de Cìencies Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860

Castelldefels (Barcelona), Spain
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Abstract
Neural networks (NNs) usually hinder any insight into the reasoning behind their predictions. We
demonstrate how influence functions can unravel the black box of NN when trained to predict the
phases of the one-dimensional extended spinless Fermi–Hubbard model at half-filling. Results
provide strong evidence that the NN correctly learns an order parameter describing the quantum
transition in this model. We demonstrate that influence functions allow to check that the network,
trained to recognize known quantum phases, can predict new unknown ones within the data set.
Moreover, we show they can guide physicists in understanding patterns responsible for the phase
transition. This method requires no a priori knowledge on the order parameter, has no
dependence on the NN’s architecture or the underlying physical model, and is therefore applicable
to a broad class of physical models or experimental data.

1. Introduction

Machine learning (ML) influences everyday life in multiple ways with applications like text and voice
recognition software, fingerprint identification, self-driving cars, and many others. These versatile
algorithms, dealing with big and high-dimensional data, also have a noticeable impact on science, which
harnessed neural networks (NNs) to solve problems of quantum chemistry, material science, and biology
[1–4]. Physics is no different in exploring ML methods, encompassed already by astrophysics, high-energy
physics, quantum state tomography, and quantum computing [5–11]. Especially abundant is the use of ML
in phase classification. It is not surprising if one considers that determining the proper order parameters for
unknown transitions is no trivial task, on the verge of being an art. It includes the search in the
exponentially large Hilbert space and the examination of symmetries existing in the system, guided by the
intuition and educated guess. The alternative route was shown, when NNs located the phase transitions for
known models without a priori physical knowledge [12, 13]. Numerous works followed, studying classical
[12, 14–17], quantum [13, 18–25], and topological phase transitions [26–30] as well as phases in
experimental data [31, 32]. ML not only finds expected phases but also does it at a much lower
computational cost, e.g., using fewer samples or smaller system sizes [20, 22].

On the other hand, there are still open questions of ML struggling with topological models and
many-body localization (MBL). These problems include the need for pre-engineered features [33–35],
disagreement of predicted critical exponents [20], and high sensitivity to hyperparameters describing the
training process [22]. Moreover, even in the models described by Landau’s theory, so far, these approaches
have mostly enabled only the recovery of known phase diagrams or the location of phase transitions in
qualitative agreement with more conventional methods based, for instance, on order parameters or theory
of finite-size scaling. Most importantly, however, the resulting models are mostly black boxes, i.e., systems
with internal logic not obvious at all to a user [36]. The missing key element is the model interpretability,

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft



New J. Phys. 22 (2020) 115001 A Dawid et al

i.e., the ability to be explained or presented to a human in understandable terms [37]. Without this
property, we cannot learn anything new from the ML model when applying it to unknown physical systems,
nor understand its problems with capturing the topological or MBL signatures. Physicists have already
stressed this need for interpretation, but proposed methods are either restricted to linear and kernel models
[17, 23, 38–41] or the particular NN’s architecture [42, 43] or require pre-engineering of the data, being as
a result specific to both the ML and physical model [44].

Hence, in this work, we address the need for interpretability of ML models used in physics on the
example of the fundamental one-dimensional (1D) Fermi–Hubbard model. We follow a paradigm without
relying on the a priori knowledge on the order parameter or the system itself, with an approach that is
straightforwardly applicable to any physical model or experimental data with no dependence on the
architecture of the ML model. We show how the interpretability method, called influence functions, can be
used in the quantum phase classification to understand what characteristics are learned by an ML algorithm
without, however, providing the order parameter explicitly. This universal approach unravels if an NN
indeed learned a relevant physical concept or cannot be trusted. We also present how an interpretable NN
can give additional information on the transition, not provided to the algorithm explicitly.

2. Methods

2.1. Supervised learning
We consider supervised learning problems with labeled training data D = {zi}n

i=0, where zi = (xi, yi). The
input data is coming from some input space xi ∈ X , and the model predicts the outputs coming from some
output space yi ∈ Y . In our setup, the inputs xi are the state vectors for a given physical system, and yi are
the corresponding phase labels. The model is determined by the set of parameters θ. In the training process,
the parameters’ space is being searched for the final parameters θ̂D ≡ θ̂ of the ML model, which minimize
the training loss function L(D, θ) = 1

n

�
z∈DL(z, θ). The training data set size, n, tends to be of the order of

thousands. After training, a model can make a prediction for an unseen test point, ztest, with the test loss
function value, L(ztest, θ̂), related to the model certainty of this prediction.

2.2. Interpreting neural networks
An intuitive way of unraveling the logic learned by the machine is retraining the model after removing a
single training point zr (starting from the same minimum, if a non-convex problem is analyzed), and
checking how it changes the prediction of a specific test point ztest. Such a leave-one-out training (LOO)
[45] studies the change of the parameters θ, now shifted to a new minimum θ̂D\{zr} of the loss function, as

depicted in figure 1(a). The largest test loss changes, ΔL ≡ L(ztest, θ̂) − L(ztest, θ̂D\{zr}), indicate the most
influential training points for a given test point ztest being the ones whose removal causes the largest change.
Influential examples can be both helpful (ΔL > 0) and harmful (ΔL < 0). Such an analysis gives the
notion of a similarity used by the machine in a given problem, as training points being the closest in the
ΔL space can be understood as the most similar. Once the most influential points are indicated, we can
decode what characteristics are looked at by comparing ’similar’ points in the machine’s ’understanding’.
It can be especially useful in phase classification problems where the analysis of ΔL enables the recovery of
patterns being crucial for distinguishing the phases. However, this technique is prohibitively expensive, as
the model needs retraining for each removed z.

To circumvent this problem, one can make a Taylor expansion of the loss function L w.r.t. the
parameters around the minimum θ̂ and approximate ΔL resulting from the LOO training, as presented in
figure 1(a). This method was proposed for regression problems already forty years ago [45–47] and named
influence functions. This interpretability method is not only computationally feasible but also correctly
treats a model as a function of training data. The influence function reads

I(zr, ztest) =
1

n
∇θL(ztest, θ̂)TH−1

θ (θ̂)∇θL(zr, θ̂),

and it estimates ΔL for a chosen test point ztest after the removal of a chosen training point zr. ∇θL(ztest, θ̂)
is the gradient of the loss function of the single test point, ∇θL(zr, θ̂) is the gradient of the loss function of
the single training point whose removal’s impact is being approximated, and H−1

θ (θ̂) is the inverse of

Hessian, Hi,j(θ̂) = ∂2

∂θi
∂θj
L(D, θ)|θ=θ̂. All derivatives are calculated w.r.t. the model parameters θ, evaluated at

θ̂ corresponding to the minimum of the loss, L(D, θ̂). We can only ensure the existence of the inverse of the
Hessian if it is positive-definite. It is rarely the case with more sophisticated ML models such as NNs, whose
loss landscape is highly non-convex and whose local minima are dominantly flat [48]. However, Koh et al
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Figure 1. (a) A visual explanation of leave-one-out training and its approximation, the influence function. (b) Schematic phase
diagram of the extended one-dimensional half-filled spinless Fermi–Hubbard model with the schemes of the corresponding
states: LL—Luttinger liquid, BO—bond order, CDW-I and II—charge density wave type I and II. The arrows indicate the
transitions studied in this work.

showed that this method can be generalized to such minima and therefore applied to ML [49, 50]. The
example code can be found in Ref. [51].

2.3. Physical model
We apply influence functions to a small CNN (see appendix B for the architecture) trained to recognize
phases in the extended Hubbard model, namely a 1D system consisting of spinless fermions at half-filling.
The Hubbard models are of fundamental importance to the condensed-matter physics, with the
two-dimensional Fermi–Hubbard model believed to describe the high-temperature superconductivity of
cuprates [52]. The chosen 1D system has the advantage of being within the power of efficient numerical
simulations. As a result, it has a rich and well-studied phase diagram [53, 54] and is a promising candidate
to be simulated in quantum simulator [52]. As such, it is suitable to benchmark the influence functions (or
any interpretability method) in phase classification problems. In this model, fermions hop between
neighboring sites with amplitudes J and interact with nearest neighbors with strength V1 and next-nearest
neighbors with strength V2

Ĥ = −J
�

�i,j�
c†i cj + V1

�

�i,j�
ninj + V2

�

��i,j��
ninj. (1)

The competition between the system parameters J, V1, and V2 leads to four different phases: gapless
Luttinger liquid (LL), two gapped charge-density-wave phases with density patterns 1010 (CDW-I) and
11001100 (CDW-II), and bond-order (BO) phase, as seen in figure 1(b). The order parameter describing
the transition to the CDW-I (-II) phase is the average difference between (next-)nearest-site densities.
Staggered effective hopping amplitudes characterize the BO phase. We feed the CNN with ground states
expressed in the Fock basis, labeled with their appropriate phases, calculated for a 12-site system (see
appendix A for the details). The hopping amplitude, J, is set to 1 throughout the paper.

3. Results

3.1. Transition between LL and CDW-I
We train a CNN to classify ground states into two phases: LL and CDW-I based on the transition line
marked with the arrow (1) in figure 1(b) for V2 = 0. We plot the influence functions of all training
examples for a chosen test point (marked with orange line) in figure 2. The order parameter describing the
transition here is the average difference between nearest-site densities, which is zero in the LL phase and
non-zero (growing to one) in the CDW-I phase.

The panels (a) and (b) present how influential training points are for test points from the LL phase. The
test state (a) is the ground state located deeply in the LL phase, while (b) is closer to the transition. If the
CNN learns an order parameter, all training points, i.e., ground states from the LL phase exhibiting a zero

3



New J. Phys. 22 (2020) 115001 A Dawid et al

Figure 2. Influence functions of all training examples, i.e., ground states calculated for the transition line between LL and
CDW-I for V2 = 0, marked with dots, for chosen test points marked with an orange line. Blue (purple) dots are influence
function values for training examples from the LL (CDW-I) phase. Larger green (red) dots are five the most influential helpful
(harmful) training examples. Different background shades indicate two phases. (a) and (b) Blue training points from the LL
phase are similarly influential to the classification of the test point from the same phase. They all are characterized by a zero order
parameter. (c) and (d) The most helpful training examples for the classification of the test points from the CDW-I phase are the
ones with the most similar order parameter. Note the use of symmetric log scale.

order parameter, should be similarly positively influential, and that is precisely what we observe. They form
an almost flat line in panels (a) and (b). For both test points (a) and (b) from the LL phase, the most
harmful training points are the ones closest to the transition, but on the CDW-I side. These states are the
most similar (with the smallest order parameter value), but already labeled differently.

A careful reader can notice that if the CNN learns an order parameter, the training points from the LL
phase, all exhibiting a zero order parameter, should be similarly influential and form a flat line in all the
panels of figure 2. However, we see that in reality, their influence changes linearly, what panel (c) shows
especially well. This divergence from expected behavior is mostly due to numerical reasons, and we discuss
it in appendix A.

On the side of the CDW-I phase, the influence pattern is significantly different. The curvature of
influential points corresponds to the growth of the order parameter, and the most influential helpful points
are the ones closest to the test point in the order parameter space, slightly shifted towards the transition
point, as they provide more information. Panel (c) shows the influence functions of training points for the
test states on the CDW-I side, close to the transition. The most harmful examples are, as in the previous test
points, the ones closest to the transition, but on its other side. However, panel (d) presents a distinct
behavior of the most harmful examples being in the same phase. All the training points are similarly
influential with small values of influence functions resulting in the almost flat line. It is a signature of the
CNN’s high certainty regarding the prediction made in panel (d) manifesting with a small test loss function
L(ztest, θ̂). Also, the analyzed test point is deeply in the CDW-I phase, with all neighboring states being
almost identical with the order parameter close to 1. The most harmful examples are the ones we label as
the CDW-I phase, but very different, so the ones closest to the transition.

While analyzing the figures, it is vital to keep in mind that we do not explicitly provide any information
on the nearest-neighbor interaction, V1/J, present on the x-axis (or any physical parameters, in general). We
provide the input states in the random order. Therefore, the smooth patterns created by the influence
functions and resulting ordering of training points, especially on the CDW-I phase’s side, is the sole
consequence of the internal analysis of the states by the machine.

3.2. Transfer learning
With a similar approach, we validate the transfer learning to another transition line. We take the trained
CNN from figure 2, and in figure 3 we apply it to test states coming from the transition line for
V2 = 0.25V1, where the next-nearest-neighbor interaction shifts phase transition to higher values of V1/J.
Therefore the training and test states come from different transition lines, V2 = 0 and 0.25V1, marked in
figure 1(b) with the arrows (1) and (2), respectively. Notice the shift of the panels’ backgrounds as
compared to figure 2. They mark two phases of the test transition line, having a different transition point
(V1/J = 1.85) than the training transition line (V1/J = 1).
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Figure 3. Influence functions of all training examples, i.e., ground states calculated for the transition line between LL and
CDW-I for V2 = 0, marked with dots, for chosen test states from transition line for V2 = 0.25V1 marked with an orange line.
Blue (purple) dots are influence function values for training examples from the LL (CDW-I) phase for V2 = 0. Larger green (red)
dots are five the most influential helpful (harmful) training examples. Different background shades indicate the phase transition
for V2 = 0.25V1 line, from which test states come from. Figure 3 shows very similar patterns as ones in figure 2, but shifted. It
indicates that the similarity of test and training points is connected to their order parameters, as the order parameter of test
points is shifted towards larger V1/J values, compared to training points, due to coming from the V2 = 0.25V1 transition line.
Note the use of symmetric log scale.

Panels (a) and (b) of figure 3 show the influence function values of training data for test states from the
LL phase, while (c) and (d)—from the CDW-I phase. Panel (a) is identical to the panel (a) of figure 2, but
already panel (b) shows an interesting divergence from the figure 2(b), being a result of a shifted transition
point of the test line compared to the training line. No longer the same value of V1/J, for which test and
training states were calculated, yields the same order parameter for both of them. For example, the test state
being in the LL phase, close to the transition point for V2 = 0.25V1 should be the most similar to the
training points from the LL phase, close to the transition point V2 = 0, and have the most similar order
parameter. The ML algorithm follows this similarity with regards to the order parameter, what implies a
successful transfer learning scheme. We see similar behavior in panel (c), where the most helpful points are
also shifted as compared to figure 2(c).

3.3. Inferring the existence of the third phase
This time we analyze the transition line crossing three phases, LL, BO, and CDW-II, which is indicated by
the arrow (3) in figure 1(b). Two order parameters describe this transition. One is the average difference of
the next-nearest neighbor density, which equals zero in the LL and BO phases, and grows to 1 in the
CDW-II phase. The other is the staggering of effective nearest-neighbor hoppings, being 0 in the LL phase,
non-zero in the BO phase, and slowly decaying to 0 in the CDW-II phase. In the studied range of
parameters, two phases (BO and CDW-II) co-exist (see appendix A for the details). It is crucial to note that
in this section, we train on the mentioned transition line crossing three phases, but we label ground states
only as belonging to one out of two phases.

In the first set-up, with results presented in the panels (a) and (b) of figure 4, we label ground states as
belonging to the LL (blue dots, label 0) or the BO and CDW-II phases (purple dots, label 1). Independently
on the test point location, notice two similarity regions within purple training points. Apparently the NN
learns two different patterns (order parameters) to classify the data correctly. Therefore, it notices the
existence of the third phase within the incorrectly labeled data. Inferring the third phase would be
impossible without interpretability methods, which in this sense pave the way towards unknown phases
detection.

The second set-up consists of labeling the same data as belonging to the LL and BO phases (blue dots,
label 0) or the CDW-II phase (purple dots, label 1). The influence functions’ values, resulting from this
classification, are in the panels (c) and (d) of figure 4. The pattern they form is starkly different. First of all,
there is no additional similarity region within training points from the LL and BO. The behavior is then
more similar to the one seen in figure 2 with the transition between LL and CDW-I. It is not identical,
though, as in the phase LL + BO the most helpful training points are always distributed randomly, but deep
in the LL phase, avoiding the BO phase. The most helpful points on the CDW-II side are deep in the
CDW-II phase in contrast to figure 2, where they mostly follow the test point. Consider, that the deeper the
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Figure 4. Influence functions of all training examples, i.e., ground states calculated for the transition line crossing LL, BO, and
CDW-II for V1/J = 1, for chosen test points marked with an orange line. Training examples are marked with dots and labeled
differently within two rows, i.e., as (a) and (b) LL—not LL and (c) and (d) CDW-II—not CDW-II. Blue dots are influence
function values for training examples from (a) and (b) the LL phase, (c) and (d) the LL and BO phases, while purple ones (a) and
(b) from the BO and CDW-II phases, (c) and (d) from the CDW-II phase. Larger green (red) dots are five the most influential
helpful (harmful) training examples. Different background shades indicate phase transitions. (a) and (b) CNN classifies states as
belonging to the LL phase or not and detects two similarity regions in the ’not-LL phase’. It effectively indicates the existence of
an additional phase. (c) and (d) The model exhibits overfitting. Note the use of a symmetric log scale, except for the linear y axis
in panels (c) and (d).

CDW-II phase, the smaller the BO order parameter, what makes CDW-II predictions easier. The observed
pattern is the example of NN not learning correctly the order parameter and potentially overfitting.

Finally, we trained a CNN on the same data, but with three labels correctly corresponding to all three
phases. The influence patterns resemble those seen in figure 2 and panels (c) and (d) of figure 4, indicating
that CNN correctly learns both appropriate order parameters.

4. Conclusions

We used the interpretability method called influence functions on the CNN trained in a supervised way to
classify ground states of the extended 1D half-filled spinless Fermi–Hubbard model. We provided strong
evidence that the ML algorithm learned a relevant order parameter describing the quantum phase
transition. If no knowledge on the actual order parameter were available, influence functions’ values would
guide the search for patterns responsible for phase transition and help extract a relevant order parameter,
however not providing it explicitly. We showed that the influence functions, applied to the trained NN, were
able to detect an unknown phase. Two aspects impacted which training points were the most important for
a given test point: how similar they were to the test state and how unique within the training data set.
Together they gave a notion of distance or similarity used by the CNN in the phase classification problem
and indicated that the patterns relevant for the predictions coincided with the order parameters.

Our approach may be used to address open problems of topological models and MBL with NNs, whose
logic can be finally discovered by influence functions. They may be easily applied to any physical model in
general. Influence functions should be very successful at distinguishing between types of phase transitions.
In particular, the curvature of the line drawn by influence functions’ values should be different for the
transitions characterized by continuous and discontinuous change of the order parameter. Moreover, this
tool proved to be very sensitive to outliers existing in the data set and may serve for anomaly detection.
Finally, along with unsupervised learning techniques, it can serve as the first search for unknown phases and
order parameters in experimental data.
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Appendix A. Phase diagram of the extended one-dimensional half-filled spinless
Fermi–Hubbard model

We study the one-dimensional system consisting of spinless fermions at half-filling with hopping between
neighboring sites with amplitudes J, interacting with nearest neighbors with strength V1 and next-nearest
neighbors with strength V2, described with Hamiltonian 1. The model exhibits four different phases, two of
them co-exist in the limited range of parameters. Without the next-nearest-neighbor interaction, V2, the
system can follow only patterns of the gapless liquid Luttinger (algebraic) phase (LL) or the charge-density
wave of type I (CDW-I) with the degenerated density pattern 101 010. The CDW-I order parameter
describing this transition reads OCDW−I =

1
L

�
�i,j�|ni − nj|, where �� symbolizes nearest neighbors. The

next-nearest-neighbor interaction, V2 competes with V1, so for non-zero V2 but still smaller than V1 the
transition between LL and CDW-I shifts towards bigger V1. For sufficiently strong V2 the BO phase emerges

with the order parameter OBO = 1
L

�
i(−1)iBi, where Bi =

�
c†i ci+1 + c†i+1ci

�
. It turns into the

charge-density wave of the type II (CDW-II) with the degenerated density pattern 11 001 100 for large V2

values, with OCDW−II =
1
L

�
��i,j��|ni − nj|, where ���� symbolizes next-nearest neighbors.

To calculate the ground states and order parameters of the model, we use QuSpin package [55] to write
the Hamiltonian for a 12-site system in the Fock basis, resulting in 924 basis states. We assume periodic
boundary conditions. We perform the exact diagonalization with the SciPy package [56]. The ground states
belonging to BO, CDW-I, and II phases are degenerated. To lift the degeneracy of the ground state, we apply
symmetry breaking (guiding) fields favoring one of the patterns.

This approach results in the order parameters in the LL being not exactly constant and equal to zero.
Instead, their values are growing very slowly when approaching the transition points. Therefore, there is no
exact transition point, so we define it as such parameters of the system that correspond to the order
parameter being ten times bigger than the corresponding symmetry breaking fields. Due to the guiding
fields of values 10−7, 10−5, and 10−4 for 101 010 and 11 001 100 density patterns and 1010 hopping pattern,
respectively, the order parameters of values 10−6, 10−4, and 10−3 signal the transition to the CDW-I,
CDW-II, and BO phase, respectively.

The non-zero order parameter in the uniform phase and numerical arbitrariness of choosing the
transition points are the main reasons why the influence functions’ values in the LL phase, seen in figures 2
and 3, and panels (a) and (b) of figure 4 of the manuscript are not precisely the same. The third reason is
the finite-size effects. As the order parameters in the LL phase are growing very slowly, finally, the most
helpful points are the ones near the transition—they are also the most unique from the training points
labeled as LL, and the information they provide is the most valuable. In the perfect scenario (observed, for
example, for training on states obtained from mean-field calculations), the five most influential points
randomly distribute over the whole LL phase.

It is interesting to note that the results presented in this work stay the same without the
symmetry-breaking fields and do not depend on the size of the system.

Within this work, we train the convolutional NN on three transition lines indicated with arrows (1)–(3)
in figure 1(b). The first transition line leads from the LL to the CDW-I phase. We calculate it for a constant
V2 = 0 and V1/J = �0, 40�. It is a source of training data for both figures 2 and 3, and test data for figure 2.
It is symbolized in figure 1(b) with the arrow (1), and the values of corresponding order parameter OCDW−I

are plotted in figure 5(a). The transition, defined as above, occurs for V1/J = 1. The second transition line
is calculated for V2 = 0.25V1 and V1/J = �0, 80�. Indicated with the arrow (2), it is the source of test data
for figure 3 of the main manuscript. We plot the corresponding order parameter CDW-I in figure 5(b), and
the transition takes place for V1/J = 1.85. The final transition line cuts three phases: LL, BO, and CDW-II.
It is marked with the arrow (3) and provides both training and test data for figure 4 of the main
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Figure 5. Corresponding order parameters’ values for three transition lines studied within this work, indicated with arrows
(1)–(3) in figure 1(b). (a) and (b) CDW-I order parameter for the transition line between the LL and the CDW-I phase for
V2 = 0 and 0.25V1, respectively. (c) CDW-II and BO order parameters for the transition line between LL, BO, and CDW-II for
V1 = 1J. Note the logarithmic scale of y-axis, and the symmetric log scale of x-axis with threshold points chosen to be 3, 3, and 2,
respectively. Cusps in the lines are artificial and result from the symmetric log scale of x-axis.

Figure 6. Scheme of used architecture. Length scale does not apply.

manuscript. It is calculated for constant V1 = 1/J and V2 = �0, 8�V1. Transition between LL and BO occurs
for V2 = 0.51V1, and between BO and CDW-II for V2 = 1.7V1. It is important to notice that for the chosen
range of parameters V2 = �1.7, 8�V1, two phases co-exist what can be seen in figure 5(c).

Appendix B. Convolutional neural network

We use a NN (see figure 6) consisting of 3 one-dimensional convolutional layers with five filters on the
input vector, eight filters on the first hidden layer, and ten filters for the last convolution layer. After the first
two convolutions, we apply a max-pooling layer to reduce the dimension, and the last convolutional layer is
followed by an average pooling layer. Finally we have one fully connected layer with two output neurons
that predict the labels. When designing the architecture, we make sure that the convolutional part contains a
large part of the NN’s parameters. For the training of the NN, we use state vectors from each phase as input
and label them with 0 or 1 for each phase. We obtain the state vectors via the exact diagonalization of the
Hamiltonian 1.

We use L2 regularization during the training to effectively decrease the certainty of the NN’s predictions.
The undertrained NN with imperfect accuracy can provide better intuition behind the problem than
overtrained one, whose predictions are impacted by overfitting. Used CNNs had accuracy between 89 and
96%.

ORCID iDs

Anna Dawid https://orcid.org/0000-0001-9498-1732
Patrick Huembeli https://orcid.org/0000-0001-7047-6897
Michal Tomza https://orcid.org/0000-0003-1792-8043
Maciej Lewenstein https://orcid.org/0000-0002-0210-7800
Alexandre Dauphin https://orcid.org/0000-0003-4996-2561

8



New J. Phys. 22 (2020) 115001 A Dawid et al

References

[1] Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401
[2] Ward L and Wolverton C 2016 Curr. Opin. Solid State Mater. Sci. 21 167
[3] Christiansen E M et al 2018 Cell 173 792
[4] Wong D and Yip S 2018 Nature 555 446
[5] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L and Zdeborová L 2019 Rev. Mod. Phys. 91 045002
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