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Great advances in precision measurements in the quantum 
regime have been achieved with trapped ions and atomic 
gases at the lowest possible temperatures1–3. These successes 
have inspired ideas to merge the two systems4. In this way, 
we can study the unique properties of ionic impurities inside 
a quantum fluid5–12 or explore buffer gas cooling of a trapped-
ion quantum computer13. Remarkably, in spite of its impor-
tance, experiments with atom–ion mixtures have remained 
firmly confined to the classical collision regime14. We report 
a collision energy of 1.15(±0.23) times the s-wave energy 
(or 9.9(±2.0) μK) for a trapped ytterbium ion in an ultracold 
lithium gas. We observed a deviation from classical Langevin 
theory by studying the spin-exchange dynamics, indicating 
quantum effects in the atom–ion collisions. Our results open 
up numerous opportunities, such as the exploration of atom–
ion Feshbach resonances15,16, in analogy to neutral systems17.

Neutral buffer gas cooling of trapped ions has a long history18, 
dating back to when laser cooling was still in its infancy. The devel-
opment of atom trapping spurred efforts to employ quantum degen-
erate buffer gases. These are readily prepared in the 100 nK regime 
by evaporative cooling, making them superb coolants. Despite this, 
it is well known that the time-dependent electric potential of a Paul 
trap complicates matters19. It causes a fast-driven motion in the ions 
called micromotion, from which energy can be released when an ion 
collides with an atom. This leads to a situation in which the kinetic 
energy of the ion becomes much larger than that of the surrounding 
buffer gas. Because of this, buffer gas cooling remained uncompeti-
tive compared with laser cooling of the ions. It has also prevented 
the study of interacting ions and atoms in the quantum regime, 
and reported collision energies of atom–ion mixtures have been at 
least two orders of magnitude higher than the s-wave energy14. It 
was suggested that this effect could be mitigated by employing an 
ion–atom combination with a large mass ratio20, such as Yb+ and 6Li.

We trap and Doppler cool a single 171Yb+ ion in a Paul trap  
(Fig. 1a). We prepare a cloud of 5 × 103 to 2 × 104 6Li atoms per spin 
state in a mixture of ∣ = ∕ = ± ∕ ⟩F m1 2, 1 2F , where F is the total 
angular momentum quantum number and mF is its projection onto 
the quantization axis, and a temperature of Ta = 2–10 μK in an opti-
cal dipole trap 50 μm below the trapped ion (see Methods). The 
atoms are transported up by repositioning the dipole trap using 
piezo-controlled mirrors. After a variable interaction time, the opti-
cal dipole trap is switched off, and the ion is interrogated with a 
spectroscopy laser pulse at 411 nm that couples the ∕S1 2 ground state 
to the long-lived ∕D5 2 state (Fig. 1b). We obtain the average kinetic 
energy of the ion by studying this laser excitation as a function of 
pulse width8,21. In particular, the Rabi frequency Ω of oscillations 

between the two states depends on the number of quanta n present 
in the motion of the ion in its trap. Thermal occupation of excited 
states results in mixing of frequency components and thus damping 
of the Rabi oscillation. We fit the observed excitation to a model that 
assumes a thermal distribution with n motional quanta on average 
(mean). From this, we obtain the ion’s secular temperature in the 
radial direction ⊥Tsec ∝ n (see Methods).

We observe buffer gas cooling of the ion by temperature mea-
surements after various hold times of the trapped ion in the ultra-
cold cloud. The result for an atomic cloud with =Ta  10 μK and peak 
density ρ = ± ×31( 15) 1015 m−3 is shown in Fig. 2a. Initially, the ion 
has about =⊥Tsec  600 μK, which is close to the Doppler cooling limit. 
Then, the ion cools down with a 1/e time of τcool = 244(±24) ms 
to a final temperature of =⊥Tsec  98(±11) μK, corresponding to 

= . ± .n 5 8( 0 7) in the radial directions of motion. The buffer gas cool-
ing thus outperforms Doppler cooling by a factor of ~5 in terms of 
attained temperature.

Note that the final ion temperature in Fig. 2a is about an order 
of magnitude larger than the temperature of the buffer gas. This 
behaviour may be a direct consequence of the time dependence of 
the ionic trapping potential8,22–26, which causes energy release from 
the ion’s micromotion during a collision. We investigate this by 
comparing the observed dynamics of the ion in the buffer gas with 
classical molecular dynamics simulations27, in which we draw the 
ion’s initial secular energy from a Maxwell–Boltzmann distribution 
at =T 609sec  μK to match the data.

If we run the simulations assuming a static ion trapping poten-
tial for the ion (known as the secular approximation28), we find 
complete thermalization, →T Tsec a, as shown by the dotted line in 
Fig. 2a. We improve our model by including the time dependence 
of the Paul trap, using parameters obtained from our experiment, 
including all sources of micromotion (see Methods). In this simu-
lation, a final ion temperature of 43 μK is reached. When we also 
include the background heating rate of 85(±50) μK s−1, which was 
measured in the absence of the atoms, the simulated final ion 
temperature reaches 63(±12) μK, as shown by the dashed line in 
Fig. 2a. A likely explanation for the remaining discrepancy in the 
final temperature is overestimation of the ion’s kinetic energy by 
neglecting other dephasing mechanisms in the Rabi oscillations, 
such as laser frequency noise. Quantum corrections may also play 
a role at the small energies we obtain29. Finally, spin relaxation 
of atoms during collisions7,10,30 may also account for some back-
ground heating.

To reach even lower energies in the experiment, we cool the atoms 
to Ta = 2.3(±0.4) μK and adiabatically lower the radial trap frequency 
for the ion from ω ω≈ =x y  2π × 330 kHz to ω ω≈ =x y  2π × 210 kHz 
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at the end of 1 s of buffer gas cooling. In this way, we achieve 
=⊥Tsec  42(±19) μK, corresponding to = . ± .n 3 7( 1 4) (Fig. 2b).
The total kinetic energy of the ion can be written as 

= + +E E E Ei sec iMM eMM, that is, the secular energy plus the energy 
due to the intrinsic (iMM) and excess micromotion (eMM).  

To obtain the total collision energy, we must additionally  
determine the axial secular temperature, Tsec

ax, and the various 
micromotion energies.

Owing to the weak confinement along the trap axis 
(ω =z  2π × 130 kHz), it is more convenient to probe the excitation 
probability as a function of the frequency of the laser, which we now 
direct along the z axis. Thermal motion leads to Doppler broaden-
ing of the resonance (Fig. 2c). We fit a Gaussian distribution to the 
data and find the standard deviation σ = ±193( 26) kHz, correspond-
ing to Tsec

ax = 130(±35) μK. There are two reasons for the larger value 
compared with ⊥Tsec: first, the weaker axial trap potential gives rise 
to a higher background heating rate (200 μK s−1) and thus limits the 
attainable final temperature; second, the thermometry method is 
less reliable and more prone to overestimation of the temperature 
due to saturation broadening.

Intrinsic micromotion leads to a kinetic energy of ≈ ⊥E k TiMM B sec 
(ref. 28), where kB is Boltzmann’s constant. Excess micromotion 
occurs because of experimental imperfections that modify the 
trap potential. Details of the compensation and characterization of 
excess micromotion can be found in Methods. In the experiment, 
we find ∕ ≤E keMM B  44(±13) μK.

The collision energy is given by27

μ μ= +E
m

E
m

E (1)col
i

i
a

a

with mi and ma the mass of the ion and atom, respectively, μ the 
reduced mass and = ∕E k T3 2a B a  the average kinetic energy of the 
atoms. Note that, owing to the large mass ratio, μ ≈ ≪m ma i. Taking 
into account the contribution of all types of motion (Table 1) results 
in a collision energy of = . ± . ×E E1 15( 0 23) scol , with ∕ = .E k 8 6s B  μK 
the s-wave collision energy4.

Since we cooled the mixture close to the s-wave limit, we expect 
signatures of quantized angular momentum to occur in the col-
lisions. To look for signs of quantum effects in the interaction,  
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Fig. 1 | Set-up. a, A cloud of ultracold 6Li atoms is prepared in an optical 
trap ~50 μm below a single ion in a Paul trap (shown in grey). The optical 
trap is operated in crossed-beam configuration; a λ/2 waveplate turns the 
polarization of the second beam by 90° in order to avoid the formation 
of an optical lattice. The ion is then immersed in the atomic cloud by 
transporting the atom trap up using piezo-controlled mirrors. b, The ions 
are Doppler-cooled on the 369-nm S1/2→P1/2 transition. After a variable 
atom–ion interaction time, the ion is interrogated by coupling the ∕S1 2 
ground state on a narrow quadrupole transition to the ∕D5 2 excited state. 
The coupling strength of the transition can be directly related to the 
temperature of the ion. The D5/2 state decays with probabilities of 0.83 to 
the F7/2 state (lifetime t ≈ 10 years) and 0.17 to the S1/2 state. State-selective 
fluorescence detection allows us to establish the average coupling strength. 
A microwave at 12.6 GHz couples the hyperfine states F  = 1 and F = 0 of 
the S1/2 ground state.
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Fig. 2 | Cooling dynamics of an ion in the ultracold buffer gas. a, Ion temperature as a function of atom–ion interaction time, together with an exponential 
fit (solid line) and molecular dynamics simulations with and without taking into account the time dependence of the Paul trap (dashed and dotted lines, 
respectively). Before buffer gas cooling, the temperature of the ion is close to the Doppler laser cooling limit. This results in a rapidly decaying Rabi oscillation 
as a function of laser interrogation pulse width (inset). After buffer gas cooling, the Rabi oscillations persist for much longer. The branching ratio of decay out of 
the ∕D5 2 state limits the contrast of the Rabi oscillations to 0.83, as indicated by the dashed horizontal lines. The blue lines in the insets show the least-squares 
fit lines, from which we attain the ion temperature. b,c, Measurement of radial ( ⊥ = ±T 42( 19)sec  μK) (b) and axial ( = ±T 130( 35)sec

ax  μK) (c) temperatures after 
1 s of interaction time with an atomic cloud with =Ta  2.3(±0.4) μK and after adiabatic decompression of the radial ion trap potential. The blue lines show the 
least-squares fit lines; the dashed line in b indicates the attainable contrast limited by the branching ratio. Error bars for the state detection denote the quantum 
projection noise, while error bars for temperatures denote the standard deviation obtained from the fits.
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we investigate the occurrence of spin-changing collisions7,10,30 as a func-
tion of collision energy. Spin exchange is associated with short-range  
collisions between the atoms and ions, known as Langevin collisions. 
In the classical regime, the Langevin collision rate is strictly indepen-
dent of collision energy4. At very low collision energy, however, quan-
tization of the collision angular momentum and quantum reflection 
start to play a role. This leads to the occurrence of structure such as 
shape resonances in the spin-exchange rate. The details of this struc-
ture depend on the singlet and triplet scattering lengths that quantify 
the interactions between the atom and ion in the quantum regime.

After buffer gas cooling for 1 s in an atomic cloud 
with Ta = 11.6(±0.5) μK, we prepare the ion in the state 
∣ = = − ⟩∕S F m, 1, 1F1 2 , with a microwave pulse. The atomic 
ensemble is in a spin mixture of the lowest two Zeeman states 
∣ = ∕ = ± ∕ ⟩∕S F m, 1 2, 1 2F1 2 . Due to spin-exchange collisions during 
the interaction time, the ion can relax to the ∣ = = ⟩∕S F m, 0, 0F1 2  
state. We let the ion interact with the cloud of atoms with a den-
sity of 21(±10) × 1015 m−3 for ~10 ms, corresponding to about one 

Langevin collision. Only during the interaction time, we give the 
ion a variable amount of excess micromotion energy by ramping 
offset voltages on compensation electrodes4. We then shelve the 
population that remains in the ∣ = ⟩∕S F, 11 2  state to the long-lived 

∕F7 2 state. Subsequent fluorescence detection allows us to discrimi-
nate between an ion in the ∣ = ⟩∕S F, 01 2  state (spin exchange) and 
an ion in the ∕F7 2 state (no spin exchange) with near unit fidelity. 
Figure 3 shows the result of averaging 309 such experimental runs. 
We see a notable dependence of the spin-exchange rate on the colli-
sion energy and thus a clear deviation from the classical prediction, 
particularly for low collision energies.

To gain further insight, we compare the data with multichannel 
quantum scattering calculations based on the complete description 
of molecular and hyperfine structures. The amplitude, slope and 
shape of the rate constants in the investigated energy range depend 
strongly on the values of the singlet and triplet scattering lengths. 
Figure 3 presents the calculated rate constants for the spin-exchange 
collisions convoluted with the experimental collision energy distri-
bution for the singlet and triplet scattering lengths of = .a R1 2S 4 and 

= − .a R1 5T 4, with =R 704  nm (ref. 4), and 1.2 Langevin collisions on 
average during the interaction time. These values provide the best 
fit to the experimental data (see Methods).

In conclusion, we have demonstrated buffer gas cooling of a sin-
gle ion in a Paul trap to the quantum regime of atom–ion collisions. 
This has been an elusive goal in hybrid atom–ion experiments for 
more than a decade4. The data and simulations suggest that even 
lower temperatures may be reached when using colder and denser 
atomic clouds, both of which are technically feasible. In particular, 
a denser cloud would allow elimination of the background heating 
rate of the ion. We speculate that controlling elastic atom–ion colli-
sions using possible Feshbach resonances15,16 may allow the cooling 
rate and accessible temperatures in atom–ion mixtures to be tuned 
further, as is the case in neutral systems17.
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Methods
Preparation of atomic clouds. The cloud of 6Li atoms is prepared by loading a 
crossed optical dipole trap from a magneto-optical trap close to the trapped ion. 
The crossed dipole trap is formed by a fibre laser at 1,064 nm with a maximum 
output power of 200 W. By operating the laser in lin ⊥ lin polarization configuration, 
where the two beams forming the crossed dipole trap have perpendicular 
polarization, we prevent the occurrence of an optical lattice potential. At the end 
of the loading stage, we optically pump the 6Li atoms into a 50/50 mixture of the 
lowest two spin states, ∣ = ∕ = ± ∕ ⟩F m1 2, 1 2F . We increase the magnetic field to  
~ 66.3 mT to increase the collision rate between the atoms, and evaporate down to 
10 μK in 1.5 s by lowering the power of the dipole trap laser. After evaporation, the 
magnetic field is reduced to 0.4 mT, such that the atoms cease to interact strongly, 
and the cloud is transported up to the trapped ion (see main text). Overlap with 
the ion is assured by measuring the Stark shift caused by the dipole trap on the 
trapped ion, and by optimizing charge transfer collisions when preparing the ion 
in the metastable ∕D3 2 state31. For the experiments with atoms at 2.3 μK, we first 
evaporate down to 15 μK, after which, we switch the magnetic field to 30 mT. Since 
the scattering length between the two spin states is negative at this field, we prevent 
the creation of Li2 halo dimers at ultralow temperatures in this way17. These would 
complicate the interpretation of our results.

The atom number and temperature are monitored by time-of-flight analysis in 
combination with spin-selective absorption imaging. We image the cloud through 
holes in the endcaps of the Paul trap, that is, along the z direction. Time-of-flight 
data for expansion in the x and y directions are shown in Extended Data Fig. 1, 
both for the initial cloud (Ta = 2.6(±0.3) μK, 9 × 103 atoms per spin state) and after 
the 1 s buffer gas cooling time (Ta = 2.0(±0.8) μK, 5.5 × 103 atoms per spin state). 
We do not observe a substantial change in atom temperature after interaction with 
the ion. Since the temperature after the buffer gas cooling is slightly colder, but 
less accurate, compared with the temperature before buffer gas cooling, we chose 
to give the average of the two temperatures in the energy budget. The atom loss is 
comparable to the atom loss when there is no ion present. Further details of the 
preparation and analysis of the trapped atoms can be found in refs. 30–33. The time-
of-flight data for the atomic cloud used in the spin-exchange experiments are shown 
in Extended Data Fig. 1c (Ta = 11.6(±0.5) μK, 20 × 103 atoms per spin state). From 
the data, we extract atomic trap frequencies of 2π × (490(±70), 470(±140)) Hz in 
the radial directions for the coldest atomic clouds. Based on the aspect ratio of the 
atomic cloud32, the axial trap frequencies are a factor of ~10 smaller still. Since these 
values are negligible compared with the trap frequencies of the ion, the atoms can be 
treated as free particles in our simulations and in the interpretation of our data.

Determination of ion energy. To obtain information on its motional state, the 
ion is interrogated with a spectroscopy laser pulse at 411 nm that couples the 
∣ = = ⟩∕S F m, 0, 0F1 2  state to the ∣ ′= = ⟩′

∕D F m, 2, 0F5 2  state (Fig. 1). This state will 
decay to the long-lived ∕F7 2 state or back to the ground state with probabilities 
of 0.83 and 0.17, respectively34. Subsequent fluorescence imaging allows us to 
detect these states with near unit fidelity. The Rabi frequency of oscillations on the 
spectroscopy transition depends on the amount of motional quanta ni present in 
the secular motion of the ion according to ∏Ω Ω η= η

=
− ∕ Le ( )

i x y z n i0 , ,
2 2i

i
  

(refs. 8,21), where Ω0 is the ground-state Rabi frequency, η = k li i
ho is the Lamb–

Dicke parameter, ki is the wave vector of the 411 nm light projected onto the 
direction of ion motion i, ω= ℏ∕l m(2 )i

ho
i  is the size of the ionic ground-state 

harmonic oscillator (ho) wave packet for a trap frequency ωi, ηL ( )n i
2

i
 is the Laguerre 

polynomial and ħ is Planck’s constant/2π. Since the laser beam has a 45° angle  
with respect to the x and y directions of ion motion and ω ω ω≈ =x y rad,  
we set η η η= = ∕ 2x y  and η = 0z  for the measurements of the radial motion. 
Thermal occupation of excited states results in mixing of frequency components 
and thus damping of the Rabi oscillation. To obtain the ion temperature 

ω= ℏ + ∕ ∕⊥T n k( 1 2)sec B with = + ∕n n n( ) 2x y , we fit the observed excitation to 
a model that assumes a thermal distribution with probability distribution 

= ∕ + +P n n n( ) (1 )n x y
n

x y
n

, ,
1

x y,
 for each direction of motion x and y. Here,  

we assume nx = ny.

Micromotion compensation. The Paul trap operates at a drive frequency of 
ΩRF = 2π × 1.85 MHz, where ‘RF’ means radio frequency. The motion of an ion 
in the trap is composed of a secular part with eigenfrequencies ω ω ω, ,x y z and 
its intrinsic and excess micromotion at ΩRF. Intrinsic micromotion cannot be 
avoided and leads to an additional kinetic energy of the order of ≈ ⊥E k TiMM B sec 
(ref. 28). Buffer gas cooling to ultracold temperatures requires excellent control 
over excess micromotion. Not only does excess micromotion hinder cooling 
to the lowest secular temperatures as energy from the fast-driven micromotion 
can be transferred to the secular motion of the ion during a collision with an 
ultracold atom, but the kinetic energy stored in the micromotion increases the 
overall collision energy. In the following, we describe our methods to compensate 
micromotion to the required level. Furthermore, we give a detailed analysis of the 
micromotion energy budget.

Stray fields. The primary cause of excess micromotion is stray electric fields shifting 
the ion out of the RF-quadrupole node. We determine the remaining stray electric 

fields and the resulting excess micromotion with a set of two complementary 
methods. In the horizontal direction, we obtain the d.c. electric field by measuring the 
ion’s position, by fluorescence imaging using a camera, as a function of radial trapping 
potential ωrad. The position shift of the ion in an electric field . .Ed c  is given by

ω ω= × ×. .
−x E e

m
( ) (2)rad d c

Yb
rad

2

where e denotes the elementary charge and mYb is the mass of the Yb+ ion. Fitting 
the data, we obtain a stray field of = ±. .E 10( 10)d c  mV m−1. To account for drifts 
between micromotion compensation measurements, we assume a slightly higher 
limit of ≤. .E 50d c  mV m−1. The average micromotion energy EeMM is calculated as

ω
=

×
×. .

. .E E
E e
m

( )
2

(3)eMM d c
d c
2 2

Yb rad
2

resulting in an excess micromotion energy of ∕ ≤ .E k 4 7eMM B  μK ( ∕ ≤ .E k 1 9eMM B  μK) 
for a radial potential of ω =rad  2π × 210 kHz (ω =rad  2π × 330 kHz).

In the vertical direction, we measure stray fields using microwave Ramsey 
spectroscopy on the ( =∕S F, 02

1 2 ) ↔ ( = =∕S F m, 1, 1F
2

1 2 ) transition. We apply 
a magnetic field gradient of = .g 0 17v

 T m−1, leading to a frequency shift of 
2.3 kHz μm−1 in the transition. We determine the ion shift for ω =rad  2π × 25 kHz 
and ω =rad  2π × 330 kHz. From a linear fit to the measured frequency shifts, we 
obtain the required compensation voltage Vcomp, with an uncertainty of 0.05 V. To 
account for daily drifts, we assume a miscompensation of ≤Vcomp  0.2 V. We obtain 
the micromotion energy due to this miscompensation by calibrating the energy 
scale with resolved sideband spectroscopy on the narrow ↔∕ ∕S D2

1 2
2

5 2 transition, 
as explained below. For ω =rad  2π × 210 kHz, we obtain ∕ ≤ .E k 8 3eMM B  μK.

Energy calibration. We calibrate the excess micromotion energy versus 
voltage on the compensation electrodes by using resolved sideband 
spectroscopy on the ↔∕ ∕S D2

1 2
2

5 2 transition. We use the magnetic field 
insensitive = = ↔ = =F m F m( 0, 0) ( 2, 0)F F  transition in 171Yb+. We compare 
the Rabi frequency on the micromotion sideband (ΩMM) and on the carrier 
(Ωcar) at =Vcomp  7 V, at a trap frequency of ω =rad  2π × 330 kHz. We obtain 
Ω =MM  2π × 28.3(±0.9) kHz and Ω =car  2π × 39.0(±1.2) kHz. Solving

β
β

Ω
Ω

=
J
J

( )
( )

(4)0 MM

1 MM

car

MM

with Ji denoting Bessel functions, yields a modulation index β = .1 18MM . From the 
modulation index, we obtain the average kinetic energy as











β Ω
=

×
E m

k4
(5)eMM

MM RF
2

where k is the projection of the wave vector in the direction of the micromotion 
and ΩRF = 1.85 MHz. This results in ∕ =E keMM B  84(±7) μK V−2 ×Vcomp

2  and 
∕ =E keMM B  208(±19) μK V−2 ×Vcomp

2  for ω =rad  2π × 330 kHz and ω =rad  2π × 210 kHz, 
respectively.

Quadrature micromotion. After carefully compensating any stray electric fields, 
we measure the remaining micromotion by resolved sideband spectroscopy. We 
set ω =rad  2π × 330 kHz. We compare Ω =car  2π × 32.0(±0.8) kHz at a laser power of 

=P 32 μW with Ω =MM  2π × 7.0(±0.5) kHz at =P 840 μW. We obtain a micromotion 
energy of ∕ =E keMM B  21.5(±1.5) μK. This value includes radial micromotion caused 
by remaining stray electric fields as well as quadrature micromotion caused by a 
phase difference of the RF signal on the opposing RF electrodes. Since we cannot 
differentiate between these types of radial micromotion, the obtained value is 
an upper limit for quadrature micromotion. The laser beam propagates at an 
angle of π/4 with respect to the direction of quadrature micromotion, so that we 
have to multiply the measured value by 2 to account for the full micromotion 
energy. Quadrature micromotion energy is proportional to the square of the trap 
frequency, so that we obtain ∕ =E keMM B  2 × 8.7(±0.6) μK for ω =rad  2π × 210 kHz.

Axial micromotion. Finite size effects of the linear Paul trap lead to a weak RF 
potential in the direction of the trap axis. Thus, the oscillating electric field 
vanishes at one point on the axis only. We position the single ion in our trap 
to this point and measure an upper limit to the remaining axial micromotion. 
Axial micromotion can, in principle, be measured in the same way as described 
for the quadrature micromotion, using a laser beam propagating along the trap 
axis. However, since our axial potential is weak, ω ≤ax  2π × 130 kHz, and the 
corresponding Lamb–Dicke parameter η ≥ .0 23ax , we do not observe coherent 
oscillation when exciting with a laser beam propagating along the trap axis. To 
still measure an upper limit for axial micromotion, we compare a frequency scan 
over the carrier at very low power, =P 61 μW, with a scan over the micromotion 
sideband at full power, = .P 21 7 mW. From Extended Data Fig. 2, we see that the 
transition on the micromotion sideband at these settings is not stronger than the 
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carrier transition. From the ratio of laser powers, we calculate an upper bound to 
the axial micromotion of ∕ =E k 33eMM B  μK for ω =rad  2π × 330 kHz. If we reduce 
the radial trap potential to 2π × 210 kHz, we obtain ∕ =E k 13eMM B  μK. The limits 
obtained for micromotion energy at ω =rad  2π × 210 kHz and ω =rad  2π × 330 kHz  
are summarized in Table 2.

Tuning the collision energy. In the experiment, we tune the kinetic energy of the 
ion by shifting it out of the Paul trap centre with an electric control field . .Ed c . The 
resulting micromotion experienced by the ion causes a coherent motion with an 
energy distribution for ≤ . .E E E2 ( )eMM d c :

=
π −. .

P E
E E E E

( ) 1 1
(2 ( ) ) (6)E

eMM d c
eMM

To compare the data with the quantum scattering calculations, we convolute the 
calculated spin-exchange rates γ E( ) with this energy distribution. Here, we assume 
a thermal offset of 20 μK and use the maximum of the distribution to label the 
collision energy in Fig. 3.

Molecular dynamics simulations. We numerically simulate the full trapped-
ion–atom system including the excess micromotion detected in our experiment. 
To model collisions, we introduce atoms one after another at a random location 
on a sphere of radius r0 = 0.6 μm around a single ion. Each atom starts with a 
velocity drawn from a Maxwell–Boltzmann distribution at Ta = 10 μK and passes 
the sphere, where it can interact with the ion. We set the interaction between the 
atom and ion to27







= − +V r C

r
C
r

( ) 1
2

(7)ia 4 4
6
6

with atom–ion distance r, where = .C 5 6074  J m4 for 6Li/171Yb+, and we set 
= × −C 5 106

19 m2 to account for the short-range repulsion between the atom and 
ion. When the atom leaves the sphere, the ion’s kinetic energy (averaged over the 
micromotion period) is obtained, and the next atom is introduced. We obtain the 
average ion cooling curve by averaging 300 simulation runs, containing Nat = 8,000 
atoms each.

We fit an exponential of the form = − +⊥
∞

− ∕
∞T n T T T( ) ( )e n N

sec col 0
col eq  to the 

simulated cooling dynamics. Here, ncol denotes the number of collsions while T0 
denotes the starting ion temperature before any atom-ion interactions. From this, 
we obtain the characteristic 1/e number of collisions Neq it takes to equilibrate and 
the final ion temperature ∞T . From the average atomic flux ϕ = ∕N tat at prop through 
the sphere within the total propagation time tprop, we can translate Neq into the 1/e 
number of Langevin collisions NL,eq via

ρ
μ ϕ

= πN
C N

2 (8)L,eq sim
4 eq

at

Here, ρ = ∕ ∕ πr1 (4 3 )sim 0
3  is the atomic density in the simulation. By comparing with 

the experimental 1/e cooling time τ = ±244( 24)exp  ms, we can deduce the atomic 
density ρat in the experiment via the Langevin rate

Γ
τ

ρ
μ

= = π
N C

2 (9)L
L,eq

exp
at

4

to be ρ = ± × −24( 3) 10 mat
15 3, which is in agreement with the results from 

absorption imaging.
In the experiment, the buffer gas cooling is competing with ion heating 

caused by electric field noise. Independent measurements give a heating rate of 
γ = ±83( 50)heat

 μK s−1 in the radial direction in the absence of atoms. We account 
for this heating by setting γ γ γ∕ = − + +⊥ ⊥

∞T t t T t Td ( ) d ( )sec cool sec cool heat
, which results 

in γ γ= − + + ∕γ⊥
∞

−
∞T t T T T( ) ( )e t

sec 0 heat cool
cool , with γ γ∕ ≈heat cool

 20 μK and γcool  
the buffer gas cooling rate.

Finally, we obtain the energy distribution of secular ion motion from the 
numerical simulations. It has been found8,22–26 that the energy distribution of a 
trapped ion can deviate substantially from a thermal distribution when interacting 
with a buffer gas. In our calculations, we do not find an observable difference from 
a thermal distribution for the secular motion of the ion after buffer gas cooling, 
as shown in Extended Data Fig. 3. We attribute this result to the large mass ratio 
between the atoms and ion8,25.

Quantum scattering calculations. We construct and solve a quantum microscopic 
model of cold atom–ion interactions and collisions on the basis of the ab initio 
multichannel description of the Yb+–Li system as presented in refs. 16,31. The 
Hamiltonian used for the nuclear motion accounts completely for all relevant 
degrees of freedom, including the singlet and triplet molecular electronic states, 
the molecular rotation and the hyperfine and Zeeman interactions. Experimental 
values of relevant parameters, including the magnetic field of 0.4 mT, are assumed. 
We construct the total scattering wave function in a complete basis set containing 
electronic spin, nuclear spin and rotational angular momenta.

We solve the coupled-channels equations using a renormalized Numerov 
propagator with step-size doubling. The wave-function ratios are propagated to 
large interatomic separations, transformed to the diagonal basis, and the K and S 
matrices are extracted by imposing the long-range scattering boundary conditions 
in terms of Bessel functions. As an entrance channel, we assume Yb+ in the 
∣ = = − ⟩F m1, 1F  state and Li in the ∣ = ∕ = − ∕ ⟩F m1 2, 1 2F  or ∣ = ∕ = ∕ ⟩F m1 2, 1 2F  
state, while all other allowed channels are included in the model. The inelastic rate 
constants and scattering lengths are obtained from the elements of the S matrix 
summed over relevant channels including different partial waves l.

We calculate the rate constant for spin-changing collisions K E a a( , , )S T  as a 
function of the singlet and triplet scattering lengths. The scattering lengths of the 
singlet and triplet potentials are fixed by applying uniform scaling factors λi to 
the interaction potentials: λ→V r V r( ) ( )i i i . We express scattering lengths in units of 
the characteristic length scale for the atom–ion interaction μ= ∕ℏR C4 4 . Next, 
the rate constant is convoluted with the ion’s energy distribution induced by a 
controlled micromotion added to a thermal energy offset of ∕E k0 B = 20 μK.

∫= −
+

K E a a P E E K E a a E( , , ) ( ) ( , , )d (10)
E

E E

ES T 0 S T
0

0 eMM

eMM

The probability of detecting the ion spin in ∣ = = ⟩F m0, 0F  after preparing it in 
∣ = = − ⟩F m1, 1F  is calculated as

= − −S E a a n n K E a a K( , , , ) 1 exp( ( , , ) / ) (11)S T L L S T L

where nL is the number of Langevin collisions and μ= π ∕K C2L 4  is the Langevin 
collision rate coefficient. The singlet and triplet scattering lengths are found 
together with the number of Langevin collisions by minimizing the χ 2 function











∑χ
σ

=
−

=

a a n
S E S E a a n

( , , )
( ) ( , , , )

(12)
i

N
i i

i

2
S T L

1

exp S T L
2exp

which quantifies how well our theoretical model reproduces the measured 
probabilities S E( )iexp . Here, Nexp denotes the number of datapoints and σi their 
experimental error. The numerical minimization of χ 2 yields = . ± .a R1 2( 0 3)S 4, 

= − . ± .a R1 5( 0 7)T 4 and = . ± .n 1 2( 0 4)L , where the uncertainties of the theoretical 
values are obtained by imposing that χ 2 gives a P value equal to or better than  
0.05. Extended Data Fig. 4 shows corresponding χ 2 dependence on the  
scattering lengths.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request. Source data 
for Figs. 2 and 3 and Extended Data Figs. 1–4 are provided with the paper.
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Extended Data Fig. 1 | Time-of-flight (TOF) data of the atomic cloud after release from the dipole trap. We plot σx (blue) and σy (yellow). We average 
the temperature Tx and Ty to determine the atom temperature Ta a, TOF data for cold atoms after a buffer gas cooling time of 1 s. We determine an average 
atom temperature of Ta = 2.0(0.8) μK. The error bars are quite large for this measurement as the atomic density is at the lower limit of what we can 
reliably measure in our system. b, TOF data for cold atoms before the buffer gas cooling. We determine Ta = 2.6(0.3) μK. c, TOF data for the atomic cloud 
used for the spin-exchange rate measurement, we determine a temperature of Ta = 11.6(0.5) μK. Error bars denote standard deviations of fitted cloud sizes.
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Extended Data Fig. 2 | Micromotion analysis with resolved sideband spectroscopy. In part a and b Rabi oscillations on the carrier and the micromotion 
sideband for optimal compensation settings are plotted. From a comparison of the Rabi frequencies Ω π= ×2 32.0(0.8)car kHz and Ω π= ×2 7.0(0.5)MM
kHz in combination with the applied laser powers of =P 32411 μW and =P 840411 μK, respectively we obtain a residual micromotion energy of 

∕ =E k 21.5(1.5)eMM B μK. Part c shows a frequency scan over the carrier transition, carried out with a laser power of =P 61411 μW. A clear peak is visible. For 
the data plotted in part d the frequency of the laser is shifted by Ω− = − 1.85rf MHz compared to c and the power is increased to =P 21.7411 mW. At the 
expected resonance frequency for the micromotion sideband we do not see a clear peak, only the background is higher compared to c due to off-resonant 
carrier excitation at these high laser powers. If we shift the ion out of the optimal position for minimal micromotion we observe a clear resonance again 
as plotted in e. We conclude that the Rabi frequency ΩMM on the micromotion sideband presented in e is not larger than the Rabi frequency on the 
carrier Ωcar presented in c. From this we obtain an upper limit of the axial micromotion at the optimal position of ∕ =E k 33eMM B μK. Error bars correspond to 
quantum projection noise.
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Extended Data Fig. 3 | Calculated energy distribution after buffer gas cooling of the ion using the parameters from the experiment. The frequency 
of average secular kinetic energies is shown and fitted with a thermal distribution for a harmonic oscillator with a temperature of ⊥ =T 38.2sec  μK. No 
observable deviation from the thermal distribution is found. The results shown are from 300 simulation runs. In these simulations, the secular kinetic 
energy of the ion was obtained by filtering out energy contributions with a frequency higher than half the trap drive frequency, Ω / 2rf , as explained in ref. 26.
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Extended Data Fig. 4 | χ 2 as a function of the singlet aS and triplet aT scattering lengths with the number of Langevin collisions optimized for each set of 
scattering lengths.
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