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Magnetic properties and quench dynamics of
two interacting ultracold molecules in a trap†

Anna Dawid *ab and Michał Tomza *a

We theoretically investigate the magnetic properties and nonequilibrium dynamics of two interacting

ultracold polar and paramagnetic molecules in a one-dimensional harmonic trap in external electric and

magnetic fields. The molecules interact via a multichannel two-body contact potential, incorporating

the short-range anisotropy of intermolecular interactions. We show that various magnetization states

arise from the interplay of the molecular interactions, electronic spins, dipole moments, rotational

structures, external fields, and spin–rotation coupling. The rich magnetization diagrams depend primarily

on the anisotropy of the intermolecular interaction and the spin–rotation coupling. These specific

molecular properties are challenging to calculate or measure. Therefore, we propose the quench

dynamics experiments for extracting them from observing the time evolution of the analyzed system.

Our results indicate the possibility of controlling the molecular few-body magnetization with the

external electric field and pave the way towards studying the magnetization of ultracold molecules

trapped in optical tweezers or optical lattices and their application in quantum simulation of molecular

multichannel many-body Hamiltonians and quantum information storing.

1 Introduction

In the last two decades, experiments with ultracold atoms in
optical lattices have provided tools allowing for unprecedented
control and detection of ultracold quantum many-body
systems1–6 and resulted in successful quantum simulations of
quantum many-body Hamiltonians of increasing complexity.7–14

These successes have been achieved even though atomic gases
are typically governed by relatively simple isotropic and short-
range interatomic interactions that are well described by the
contact interaction.15 Replacing atoms with molecules opens
new possibilities resulting from the molecular rich internal
structure, complex short-range interactions, and stronger long-
range and anisotropic dipolar interactions.16–18

A molecules’ rich internal structure has earned them a
prominent role in the precision measurements of fundamental
constants,19–27 while intermolecular dipolar interactions pro-
mise exciting applications in quantum information
processing.28–32 Ultracold molecules have also been employed
in the ground-breaking experiments on quantum-controlled
chemistry33–39 enabled by the extensive control of internal
states and relative motion of molecules with external

electromagnetic fields.40–49 Numerous applications of ultracold
molecules in quantum simulations have been introduced, with
a particular interest in studying quantum magnetism.50

Molecular rotational states (in which pseudo-spins can be
encoded with microwave-field dressing) combined with the
dipolar interaction have allowed for several proposals to
realize various models of quantum magnetism.51–56 Other
theoretical works have concerned molecular quantum simula-
tions of polarons,57,58 rotating polarons,59,60 magnetic Frenkel
exciton,61 topologically nontrivial states,51 and exotic phases
such as supersolid.62,63

A more complex internal structure of molecules, as compared
to atoms, is responsible for greater experimental difficulties in
molecular formation, cooling, and trapping. Despite these chal-
lenges, several species of ultracold molecules in their ground
states have been produced via association of ultracold
atoms64–68 or recently using direct laser cooling from higher
temperatures.69,70 Ultracold ground-state molecules have also
been loaded into optical lattices,71 and dipolar spin-exchange
interactions between lattice-confined polar molecules have been
observed,72 opening the way towards quantum simulations with
molecules. On the other hand, the methods of full quantum
control, deterministic preparation, and detection at the single-
particle level, developed for ultracold atoms in optical tweezers,5,6

can readily be employed to molecules,73,74 further extending the
range of applications of ultracold molecules.75

Precise spectroscopic characterization of molecular few-
body systems of increasing complexity and reconstruction

a Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.

E-mail: Anna.Dawid@fuw.edu.pl, Michal.Tomza@fuw.edu.pl
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of underlying Hamiltonians may be both experimentally
and theoretically challenging. One of the possible solutions may
be quench dynamics experiments.76–78 In such a scenario, the
system parameters, such as the interparticle interaction strength,
trapping potential or external fields, are suddenly changed.79 This
excites the system from the ground state and induces its time
evolution, whose observation may reveal the system’s intrinsic
properties. The quench dynamics has been thoroughly studied for
two80–83 and three76 ultracold atoms in a trap. Quantum quenches
also allow one to study nonequilibrium dynamics.84–86

In this work, we study the magnetic properties and non-
equilibrium dynamics of two interacting ultracold polar and
paramagnetic molecules in a one-dimensional harmonic trap
(see Fig. 1). Intriguing features of the system arise from the
interplay of the molecular electronic spins, dipole moments,
rotational structures, external electric and magnetic fields, and
spin–rotation coupling. We present rich diagrams of the sys-
tem’s magnetization and explain the mechanisms allowing its
control on the example of molecules with spins 1/2 and 3/2. We
identify the anisotropic part of the intermolecular interaction
and the spin–rotation coupling as crucial for observing the
system’s nontrivial magnetic behavior. We propose the quench
dynamics experiments to probe and reconstruct the system’s
molecular characteristics from observing its time evolution.
We show that the strong anisotropic interaction leaves a clear
mark on the system’s time evolution after the quench of the
interaction strength. On the other hand, the time evolution of
the system’s magnetization, after the electric field quench,
depends significantly on the spin–rotation coupling strength.
The results show an intimate coupling between the electric and
magnetic properties of the system and indicate the possibility
of controlling the molecular few-body magnetization with the
external electric field. In this way, we complement the previous
studies on the coupling between the molecular electronic spins
and external electric field in the free-space collisions.42–44 The
investigated model system paves the way towards studying the

controlled magnetization of ultracold molecules trapped in
optical tweezers or optical lattices and their application in
quantum simulation of molecular multichannel many-body
Hamiltonians and quantum information storing. Recent
experiments with molecules in optical tweezers73,74 lay the
grounds for the realization of the considered system.

The plan of the paper is as follows. Section 2 describes the
theoretical model, its experimental feasibility, and used numer-
ical methods. Section 3 presents and discusses the analysis of
the magnetic properties of the system and shows how the
quench dynamics can unravel its underlying molecular char-
acteristics. Section 4 summarizes our paper and considers
future possible applications and extensions.

2 Theoretical model and methods

We consider two interacting distinguishable ultracold mole-
cules bound to move along one dimension, chosen to be a z
axis, due to the presence of a strong transverse confinement.
They are further confined in the z-direction by a harmonic
potential of frequency o. The molecules are described within
the rigid rotor approximation, have the same mass m and spin
s, and are in the same vibrational state. We approximate the
interaction between molecules with the intermolecular isotro-
pic and anisotropic contact potential. The theoretical model is
presented in detail in ref. 87, along with all necessary assump-
tions and approximations discussed. The computer code allow-
ing for reproducing the present results is available on GitHub.88

2.1 Hamiltonian and basis set

The Hamiltonian describing our system is

Ĥ = Ĥtrap + Ĥmol + Ĥfield + Ĥint, (1)

where Ĥtrap describes the motion of molecules in a one-
dimensional harmonic trap, Ĥmol = Ĥrot + Ĥspin–rot describes the
internal rotational structure of molecules and the spin–rotation
coupling between the electronic spin and the rotational angular
momentum of each molecule, Ĥfield = ĤStark + ĤZeeman describes
the interaction of molecules with external electric and magnetic
fields through the Stark and Zeeman effects, and Ĥint describes
the intermolecular interaction between molecules. Explicitly,

Ĥtrap ¼
X2

i¼1

p̂i
2

2m
þ
X2

i¼1

1

2
mozi2;

Ĥrot ¼
X2

i¼1
B̂ji

2;

Ĥspin�rot ¼
X2

i¼1
gŝi � ĵi;

ĤStark ¼ �
X2

i¼1
d̂i � E;

ĤZeeman ¼ 2mB
X2

i¼1
ŝi �B;

(2)

Fig. 1 Schematic representation of the investigated system and its features.
(a) Two interacting molecules in a one-dimensional harmonic trap under the
influence of the electric and magnetic fields can be described by a magne-
tization diagram depending on the field strengths. The fields are parallel to
each other and to the direction of molecular motion. (b) Time evolution of the
system’s observable after the quench can reveal information on the under-
lying molecular characteristics by using the Fourier transform.
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where B is the rotational constant, g is the spin–rotation
coupling strength, ĵi is the i-th molecule’s rotational angular
momentum operator, ŝi is the i-th molecule’s electronic spin
angular momentum operator, d̂i is the i-th molecule’s electric
dipole moment operator, and E and B are the external electric
and magnetic field strengths, respectively. For the convenience,
we use units of energy and interaction strength that correspond
to o = m = h� = 1. This amounts to measuring energies in units
of h�o, lengths in units of the harmonic oscillator characteristic
length aho ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=ðmoÞ

p
, and interaction strengths in units

of h�oaho.
The rotational constant B in this study is set to ph�o. It

corresponds to a less pronounced molecular character of the
system as compared to ref. 87, where very small rotational
constants were selected to enhance the impact of molecular
features. Now, trap levels are more dense than rotational ones,
which is a regime closer to experimental conditions (in which
molecular rotational constants are usually much larger than a
trap frequency). Still, we select the relatively small rotational
constant to reveal an important role played by the rotational
degree of freedom. With a choice of an irrational value, we
additionally avoid accidental degeneracies of energy levels.

We separate the center-of-mass and relative motions in the
Hamiltonian of eqn (1) and represent the wave function of the
relative motion in the following basis set:

|ni|J,MJ,j1,j2i|S,MS,s1,s2i � |ai, (3)

which is composed of the eigenstates of the one-dimensional
harmonic oscillator |ni, eigenstates of the total rotational
angular momentum operator Ĵ denoted as | J,MJ, j1, j2i, and
eigenstates of the total electronic spin angular momentum
operator Ŝ denoted as |S,MS,s1,s2i. We limit the set of |ni to
even functions due to the trivial behavior of odd states as
showed in ref. 87. The mentioned total angular momenta are
the sums of the angular momenta of individual molecules,
Ĵ = ĵ1 + ĵ2 and Ŝ = ŝ1 + ŝ2. The total angular momentum of the
system is then the sum of the total rotational and spin angular
momenta Ĵtot = Ĵ + Ŝ, and its projection Mtot = MJ + MS is a sum of
projections of the total rotational MJ and spin MS angular
momenta.

2The Hamiltonian describing the interaction between
molecules is

Ĥint = Ĥiso + Ĥaniso, (4)

where we distinguish the isotropic part Ĥiso having the same
nature as the spherically symmetric interaction between S-state
atoms in the electronic ground state and the anisotropic part
Ĥaniso responsible for the transfer of the internal rotational
angular momenta between molecules and resulting from the
molecular internal structure and orientation dependence of
intermolecular interactions. The more detailed discussion of
various models of the anisotropic interaction is provided
in ref. 87. Here, we restrict our model to the leading order of
the anisotropic interaction described by the following effective

Hamiltonians:

Ĥiso ¼
X

J;M;j1;j2

g0d z1 � z2ð ÞP̂0;

Ĥaniso ¼
X

J;M; j1aj0
1
; j2aj0

2

g�1d z1 � z2ð ÞP̂�1
(5)

with

P̂0 ¼ J;M; j1; j2j i J;M; j1; j2h j;

P̂�1 ¼ J;M; j1 � 1; j2j i J;M; j1; j2 � 1h j þH:c:;
(6)

where g0 and g�1 are the strengths of the isotropic and
anisotropic interactions, respectively, and d(z) is the Dirac delta
function imposing the contact-type interaction. The summa-
tion is performed over all basis set functions describing the
systems’ rotational degrees of freedom.

2.2 Magnetization and quench dynamics

In the first step, we calculate the magnetization hŜzi of the
analyzed system in the several lowest eigenstates, which is an
expectation value of the z-component of the total electronic
spin operator. In the second step, we analyze the nonequili-
brium dynamics of the system after the quench.

The quench dynamics experiments may allow to probe the
internal parameters of the Hamiltonian governing the analyzed
system. In a quench scenario, the system prepared initially in
the chosen state |Ci (e.g., the ground state) of a Hamiltonian
Ĥini, evolves unitarily in time following the sudden change
(quench) of the parameters to a final Hamiltonian Ĥfin.79 This
dynamics can be expressed in terms of overlaps of the initial
eigenstate |Ci of Ĥini with the eigenstates | ~Cji of Ĥfin:

jCðtÞi ¼ e�iĤfintjCð0Þi ¼
X

j

~Cj

��Cð0Þ
� �

e�iEj t ~Cj

�� �
: (7)

The time evolution of any observable Ô can be then described
as:

hCðtÞjÔjCðtÞi ¼
X

j;j0

~Cj

��Cð0Þ
� �

~Cj0 jCð0Þ
� �

e�i Ej�Ej0ð Þt ~Cj0 jÔj ~Cj

� �

¼
X

j

~Cj

��Cð0Þ
� ��� ��2 ~Cj jÔj ~Cj

� �

þ 2
X

jo j0

~Cj

��Cð0Þ
� �

~Cj0
��Cð0Þ

� �
cos Ej � Ej0

� �
t

� 	

� ~Cj0 jÔj ~Cj

� �
:

We choose to study the evolution of two observables: mag-
netization hŜzi of the system and the cloud size hr̂2i. The
formula for the cloud size is provided in ESI.† The dynamics

is calculated till time t ¼ 10 000
2p
o

with a time step of 0:1
2p
o

.

Elongating the dynamics calculations provides no additional
frequency peaks of amplitudes larger than 10�4 in the corres-
ponding discrete Fourier transforms (DFT). We perform the
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Fourier transform of the observables’ evolution using SciPy
package.89

2.3 Convergence with the basis set size

The systems’ eigenstates are calculated using the exact diag-
onalization method with the basis set composed of quantum
harmonic oscillator eigenfunctions up to nmax = 20, and quan-
tum rigid rotor eigenfunctions up to jmax = 4. The slow con-

vergence with nmax is asymptotically proportional to
1ffiffiffiffiffiffiffiffiffi
nmax
p ,90

however in the analyzed system nmax = 20 provides a satisfying
convergence for the lowest-energy states, which are the main
focus of this paper.

The convergence of the cloud-size time-evolution calcula-
tions with nmax, however, is problematic. On the one hand, the
mean value of the cloud size, hn|r̂2|n0i, calculated for two
harmonic oscillator eigenfunctions, increases rapidly with the
harmonic oscillator levels, n, becoming divergent for large
n (see ESI†). In the quench dynamics, this divergence is faster
than the decrease of the overlap between the ground state and
the highly excited states leading to the divergence of the cloud-
size excitation. However, this nonphysical behavior can be
neglected by restricting the basis sets size, knowing that all
realistic traps have a finite size, and all realistic quenches have
a finite time. On the other hand, the highest-energy eigenstates
in a finite basis set are not converged90,91 and a nonphysically
larger occupation of the highest-energy eigenstate can be
observed. We solve this problem by neglecting unconverged part
of spectrum from the quench dynamics calculations, namely by
removing eigenfunctions | ~Cji of Ĥfin with the contribution from
any basis state with |nmaxi larger than 10%. The removed part of
eigenfunctions is a few percent of the whole spectrum.

According to our previous convergence analysis,92 selected
jmax already enables convergence for the significant part of the
spectrum as well as good convergence of the quench dynamics.

2.4 Experimental feasibility

The smaller the ratio of the molecular rotational constants
to the harmonic trap frequency, B/o, the more pronounced
the analyzed system’s molecular character.87 However, typical
ultracold molecular experimental set-ups64,65,67 use three-
dimensional trap frequencies ranging from around 1 kHz to
at most 1 MHz,93 while studied ground-state molecules have
rotational constants reaching hundreds of MHz or more.94 This
combination amounts to the ratio of B/oc 1 and results in the
rotational levels separated by many harmonic trap states. In
such a scenario, the molecular features related to the molecular
rotational structure are less important.

In this work, we analyze the regime of B/oE 3, which can be
reached with tight traps (e.g., a nanoplasmonic one95) and
weakly-bound molecules (e.g., Feshbach molecules96). Fes-
hbach molecules have rotational constants up to few MHz,
but their electric dipole moments may be vanishingly small,
as they scale asymptotically as R�7 with the internuclear
separation R.97 Fig. 2 presents the dependence of the rotational

constant and permanent electric dipole moment on the mean
distance between atoms in the 87Rb133Cs molecule in the lowest
electronic state with non-zero spin, i.e., a3S. The choice of this
species is just exemplary as we expect other classes of weakly-
bound molecules to have similar characteristics. One of the
highest vibrational levels of a3S87Rb133Cs, v = 39, corresponds
to the mean distance between atoms equal to 51 bohr. We
estimate the corresponding electric dipole moment of 10�4 D
and rotational constant of 13.5 MHz. To reach the B/o ratio of
the order of the selected one, the trap frequency needs to be at
least around 0.5 MHz. Note that the upper limit for o is set also
by the size of two molecules, which increases for weakly-bound
states. The choice of the trap frequency determines the time
scale used within this work. For example, the time evolution
plotted in Fig. 7 and 8 takes 200(2p/o) E 2.5 ms for o =
0.5 MHz.

Within our work, we also analyze the time evolution of the
cloud size after the quench of the intermolecular interaction.
The sudden change of the intermolecular interaction strength
can be achieved via the change of the magnetic field strength
and related Feshbach resonances, the change of the molecular
vibrational state, or the change of the trapping frequency.
However, the selective quench of intermolecular interaction is
impossible to achieve, as, in reality, all molecular characteris-
tics are intimately connected that leads to emergent behavior
and challenging description. For example, changing the vibra-
tional state impacts the interaction but also the polarization of
molecules that modifies their response to external fields. The
quench of the trapping frequency should correspond to the
most uncorrelated change of the intermolecular interaction.76

Regarding the observables whose time evolution we study, the
internal state of molecules can be probed with quantum gas
microscopy,1,2,4 and the cloud size can be measured via
destructive time-of-flight experiments as realized for ultracold
atoms.98–100

Non-reactive trapped alkali dimers in the lowest rovibra-
tional states have been recently shown to form four-atom
complexes that are long-lived in the dark but are prone to
decay under the trapping field that results in losses.101–103 The
lifetime of such complexes is proportional to the density of

Fig. 2 The rotational constant, B, and estimated electric dipole moment,
d, of the exemplary 87Rb133Cs molecule in the lowest triplet state, as
functions of the mean distance between atoms hri, corresponding to
different vibrational levels. Similar behavior may be expected for other
weakly-bound molecules.
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states at the collision threshold. The density of states of
weakly-bound molecules, compared to deeply-bound, can be
up to eight orders of magnitude smaller.104 Therefore, the
weakly-bound molecules may be less prone to such losses.
Additionally, vibrationally-excited molecules may undergo reac-
tive collisions and other decoherence or loss processes may
occur, whose detailed characterization is, however, out of
the scope of the present study. Search for the molecules
which exhibit low losses in a trap is a challenging and very
impactful task. They probably should be lighter and have a
less dense spectrum of electronic states such as AlF.105 Regard-
ing the non-zero or large electronic spin, it may be realized
with alkaline-earth-metal fluoride molecules in the doublet 2S+

electronic state,106 alkali-metal molecules in the triplet 3S+

electronic state,107,108 or molecules containing highly-magnetic
atom,109,110 respectively. Thus, the considered system may
potentially be realized in state-of-the-art experiments on ultra-
cold molecules trapped in optical tweezers.73,74 However, exact
experimental conditions have to be yet carefully researched and
designed.

3 Results

We begin by studying the magnetic properties of two interact-
ing ultracold molecules in a one-dimensional harmonic trap.
We focus on the system’s magnetization. We analyze how it
depends on the intermolecular interaction between molecules
and the coupling between the electronic spins and the molecular
rotational momenta. We present how the system’s magnetization

can be controlled and how this control depends on the mole-
cular properties. Next, we study the quench dynamics designed
to extract the strengths of the spin–rotation coupling as well as
the isotropic and anisotropic interaction strengths between the
molecules.

3.1 Magnetic properties and its control

Mechanisms that allow control over the system’s magnetization
can be observed from the energy spectra. Fig. 3 shows calcu-
lated energy spectra as functions of the isotropic interaction
strength g0. We select a set of internal and external Hamilto-
nian parameters to present the interplay between the system’s
magnetic properties and the external fields.

Fig. 3(a) presents the energy spectrum of two molecules in a
one-dimensional harmonic trap with a strongly anisotropic
intermolecular interaction g�1 = 10 without external fields or
spin–rotation coupling. The comparison with the neighboring
panel (b) shows the impact of the external electric field on the
system. The electric field moves the energy levels by a Stark
shift and removes their degeneracy with respect to the total
rotational angular momentum, J. The electric field splits states
with J = 1 and J = 2 into two and three states, respectively,
according to the different number of possible projections of
total rotational angular momentum, MJ. Shifted states then
often anticross due to the coupling between different total
rotational momentum states.

A comparison of panels (a) and (c) in Fig. 3 shows the impact
of the medium magnetic field on the spectrum of two mole-
cules with a small spin–rotation coupling (g = 0.3h�o). The only

Fig. 3 Energy spectra of the relative motion for two interacting molecules with the spin s = 1/2 and rotational constant B = ph�o in a one-dimensional
harmonic trap as a function of the isotropic interaction strength g0 with the anisotropic interaction strength g�1 = 10 and (a) no external fields, (b) electric
field strength dE = 5h�o, and (c) the magnetic field strength B = 0.5h�o/mB and spin–rotation coupling constant g = 0.3h�o. Solid and dashed lines are for
states of even and odd spatial symmetries, respectively.
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conserved quantum number is Mtot, i.e., the sum of projections
of total rotational, MJ, and spin, MS, angular momenta. States
split accordingly to the Zeeman shift. States with the positive
projection of the total spin angular momentum MS are high-
field seekers, while energies of states with negative MS decrease
with the magnetic field strength. Shifted states then often
anticross due to a non-zero spin–rotation coupling, which
mixes states with different J, S, MJ, and MS (see the corres-
ponding Hamiltonian elements in ESI†). The impact of the
spin–rotation coupling on the system increases with the abso-
lute values of states’ total rotational and spin angular
momenta’ projections, MJ and MS. The larger |MJ| and |MS|,
the more numerous are possible combinations of the projec-
tions of individual rotational and spin angular momenta, mi,
msi, which are mixed by the spin–rotation coupling.

Fig. 4 presents rich magnetization diagrams of the studied
system in the ground state as functions of the magnetic and
electric fields. The upper row shows results for two molecules
with electronic spins 1/2 and Mtot = 0, while the bottom one –
with spins 3/2 and Mtot = 2. The primary observation is that the
number of possible magnetization values of the ground state is
limited by the total electronic spin momenta of molecules and
the selected Mtot value. This restriction results from the defini-
tion of Mtot = MJ + MS, but also because low-energy states are
characterized by small values of rotational angular momenta, j1

and j2, resulting in MJ values, which are close to zero.
The main reason for all magnetization changes in Fig. 4 is the

interplay between the Zeeman and Stark effects. The magnetic

field linearly brings down energies of the states with negative
MS, with speed depending on the MS value. The Stark effect
lowers the ground state’s energy, composed mostly of the basis
state with J = M = j1 = j2 = 0, faster than the lowest state with
negative magnetization, composed mostly of the basis state
with J = M = 1. Therefore, larger external electric field strengths
effectively force larger magnetic field strengths for the magnetiza-
tion change to happen, when the lowest states exchange their
order. Such underlying interplay is visible in all panels of Fig. 4.

3.1.1 Magnetization for spins 1/2. Panels (a)–(d) of Fig. 4
present the ground-state magnetization diagrams for the sys-
tem composed of two interacting molecules with spins 1/2 and
Mtot = 0. The choice of Mtot limits the number of possible hŜzi
values. In this case, two states are mainly responsible for the
magnetization change, namely the ground state dominated by
the J = MJ = j1 = j2 = 0 and MS = 0 basis state and the excited state
dominated by the J = MJ = 1 and MS = �1 basis state.

Panels (a) and (b) of Fig. 4 show the magnetization diagrams
for medium strength of the anisotropic interaction (g�1 = 4). In
the absence of the spin–rotation coupling, the magnetization
change results simply from the Zeeman and Stark effects’
interplay. Fig. 5(b) depicts in black the energies of states taking
part in such a change. The black line in the panel (a) of the
same figure presents the resulting hŜzi of the ground state. The
electric field can control the magnetic field’s strength at which
the change takes place.

The sharply crossing states are not coupled either by the
electric field (which conserves MJ) or the spin–rotation coupling

Fig. 4 Ground-state magnetization diagrams as functions of the electric dE and magnetic mBB field strengths for two interacting molecules with the
rotational constants B = ph�o in a one-dimensional harmonic trap for medium isotropic interaction strength g0 = 4. Panels (a)–(d) and (e)–(h) present
results for spins s = 1/2 (Mtot = 0) and 3/2 (Mtot = 2), respectively. The first two and last two columns show results for medium g�1 = 4 and large g�1 = 10
anisotropic interaction strengths, respectively. Moreover, the first and third columns present results for a medium spin–rotation coupling g = 1h�o, and the
second and the fourth columns – for strong spin–rotation coupling g = 3h�o, respectively.
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(which conserves j1 and j2). However, if both couplings are
present, the intermediate state dominated by the J = 1, MJ = 0
basis state, provides the second-order coupling between the
discussed states, which results in their anticrossing visible in
red in Fig. 5(a and b). The repulsion between states grows with
the spin–rotation coupling strength, as seen when comparing
the magnetization diagrams in panels (a) and (b) of Fig. 4. The
spin–rotation coupling also lowers the energy of states with the
largest absolute values of MJ and MS, allowing for the magne-
tization change in the weaker magnetic field.

The importance of the intermolecular interaction anisotropy
is visible when comparing the first two columns (g�1 = 4) with
the last two ones (g�1 = 10) of Fig. 4, i.e., panels (a) and (b) with
(c) and (d). Firstly, the systems with the larger anisotropic
interaction strength require smaller external fields for the
ground-state magnetization change related to the crossing of
the lowest-energy states. For electric field strengths larger than
a few h�o, the hŜzi change takes place within the same two
mechanisms described above. States with different magnetiza-
tion either cross in the absence of the spin–rotation coupling or
anticross when both the electric field and spin–rotation cou-
pling are present. However, the intermolecular interaction’s
large anisotropy allows an additional mechanism for small
electric field strengths. It brings down the states with higher
total rotational momenta, including J = 1 (as seen in Fig. 3(b)),
and non-zero MJ and MS. So when the magnetic field, through
the Zeeman effect, lifts the degeneracy of MS, the two states
strongly repel each other thanks to the spin–rotation coupling,
as seen in blue in Fig. 5(a and c). The larger the spin–rotation
coupling strength, the larger electric field strength is needed to

push down the state with J = 0 and reproduce the mechanisms
described for smaller g�1.

3.1.2 Magnetization for spins 3/2. Panels (e)–(h) of Fig. 4
show the ground-state magnetization diagrams of two interact-
ing molecules with spins 3/2 and Mtot = 2. This choice results in
a larger number of possible hŜzi values, ranging from �3 to 3.
Also, the states taking part in the magnetization changes have
much higher rotational angular momenta than ones in the
previous section.

In the case of the medium anisotropic interaction strength,
the choice of Mtot = 2 in the absence of external fields results in
a ground state with MJ = 0, MS = 2. In the absence of the electric
field or the spin–rotation coupling, the lowest states cross each
other due to the Zeeman effect, resulting in abrupt ground-state
magnetization changes. Blue lines in Fig. 6(a and b) present an
example of the magnetization and energies of such states as a
function of the magnetic field strength.

When the spin–rotation coupling is present, the spectra
become dense and exhibit multiple anticrossings, due to mix-
ing of J, S, and projections of individual molecular rotational
and spin angular momenta m1, m2, ms1, ms2. The anticrossing
strength depends on two factors. The strongest anticrossings
occur between states belonging to the same harmonic level, as
both the spin–rotation coupling and electric field conserve n.
Another factor is the anticrossing states’ composition of
individual rotational angular momenta, j1 and j2. The larger
difference between them, the smaller is the coupling induced
by the electric field. This is why the anticrossing strength
decreases with the difference of states’ magnetization, as

Fig. 5 (a) Ground-state magnetization of two interacting molecules with
the rotational constants B = ph�o, spins s = 1/2, and Mtot = 0 in a one-
dimensional harmonic trap with medium isotropic and strong anisotropic
intermolecular interaction strengths (g0 = 4 and g�1 = 10) as a function of
the magnetic field strength mBB for different electric field strengths dE and
spin–rotation coupling constants g. (b and c) Energies of the analyzed
ground states and coupled lowest-energy excited states as functions of
the magnetic field strength mBB. Color code indicates the strengths of the
electric field dE and the spin–rotation coupling g.

Fig. 6 (a) Ground-state magnetization of two interacting molecules with
the rotational constants B = ph�o, spins s = 3/2, and Mtot = 2 in a one-
dimensional harmonic trap with medium isotropic and anisotropic inter-
molecular interaction strengths (g0 = g�1 = 4) as a function of the
magnetic field strength mBB for the electric field strength dE = 15h�o and
different spin–rotation coupling constants g. (b and c) Energies of the
analyzed ground states and coupled lowest-energy excited states as
functions of the magnetic field strength mBB. Color code indicates the
spin–rotation coupling constants g.
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presented in Fig. 6, where states depicted in red change the
magnetization from 2 to 0 and 0 to �3. Due to conserved Mtot,
the change of MS is compensated by the increase of MJ. Larger
MJ forces higher rotational momenta, j1 and j2. Therefore, the
larger magnetization change, the larger difference between the
states’ rotational momenta, and the smaller coupling between
anticrossing states.

The spin–rotation coupling’s stronger impact on states with
large absolute values of MS and MJ is more prominent for spins
3/2 than for spins 1/2. A comparison between panels (e) and (f)
as well as (g) and (h) of Fig. 4 shows that the larger spin–
rotation coupling can not only bring the magnetization change
to lower magnetic field strengths, but also effectively limits the
number of accessible magnetization values, as in the case of
panels (f) and (h).

The same dependencies determine the magnetization dia-
grams for the systems with large anisotropy of the intermole-
cular interaction (g�1 = 10), as seen in panels (g) and (h) of
Fig. 4. The main difference comes from an additional hŜzi value
accessible for weaker electric fields due to bringing down the
state with higher rotational angular momentum with hŜzi = 3 by
the anisotropy of the intermolecular interaction.

3.2 Quench dynamics

The analyzed system’s magnetic properties depend strongly
on the anisotropic part of the intermolecular interaction
and the spin–rotation coupling. These molecular properties
are challenging to calculate or measure. However, they can be
extracted through the analysis of the quench dynamics of
observables that they influence.

Therefore, first, we study the nonequilibrium dynamics of
the cloud size, hr̂2i, after the quench of the intermolecular
interaction which can be achieved via the change of the trap-
ping frequency76 (see the discussion in Section 2.4). We aim at
identifying dynamical signatures of isotropic and anisotropic
part of the interaction between the molecules. Next, we analyze
the time evolution of the magnetization, hŜzi, after the quench
of the external electric or magnetic field. It provides insight into
the strength of the spin–rotation coupling present in the
molecular system.

To reconstruct couplings governing the dynamics, we per-
form the discrete Fourier transform (DFT) of the corresponding
time evolution. The resulting function indicates the frequen-
cies dictating the time evolution. These frequencies can then
be transformed into energy differences between states
whose coupling causes the system’s nontrivial dynamics. The
strength of the coupling is related to the peak’s amplitude at
the corresponding frequency.

3.2.1 The isotropic and anisotropic intermolecular inter-
actions. Fig. 7 presents the nonequilibrium dynamics of the
analyzed molecular system with total rotational angular
momentum, J = 1, after the quench of the interaction, starting
from the noninteracting case, with the initial state |C0i = |n = 0,
J = 1, j1 = 0, j2 = 1i.

Panel (a) shows the time evolution of the cloud size after
quenching the isotropic part of the intermolecular interaction

from zero to medium strength g0 = 4, which couples states
composed of different harmonic trap levels. The inset of panel
(a) presents the DFT of the studied time evolution, which can
be used to unravel couplings between states governing the
quench dynamics. The molecular system’s dynamics in these
conditions is almost identical to two ultracold atoms in a one-
dimensional harmonic trap, even though the rotational struc-
ture is present, and J is nonzero. The reason is the lack of the
anisotropic part of the intermolecular interaction and the
absence of couplings between the rotational states. As a result,
the multiple peaks visible in the DFT correspond to the
couplings with different harmonic states only, which are almost
exactly evenly separated by 2o (we ignore odd states in this
work). The divergence from the single ladder of frequencies
comes from the slightly different influence that the isotropic
interaction has on the system’s ground state, as compared to
excited ones, as known for both atomic91 and molecular87

cases. The additional ladder of frequencies slightly below 2o
comes from the couplings of higher-energy harmonic states to
the ground state. If the isotropic intermolecular interaction is
quenched to negative strengths, the multiple peaks would
become more detached. In the case of the quench to the
strongly repulsive interaction, entering the Tonks–Girardeau

Fig. 7 The time evolution of the cloud size, hr̂2i, after the quench of the
intermolecular interaction strength between two interacting molecules
without spin and with the rotational constants B = ph�o in a one-
dimensional harmonic trap with the total rotational angular momentum
J = 1. The isotropic and anisotropic interaction is quenched from zero g0 =
g�1 = 0 to (a) g0 = 4, g�1 = 0, (b) g0 = 0, g�1 = 4, and (c) g0 = 4, g�1 = 10.
Insets present the discrete Fourier transforms of the studied time
evolutions.
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regime, the DFT would show a single ladder of peaks evenly
separated by 2o. The analysis above is independent of the total
rotational angular momentum value, J as long as the aniso-
tropic part of the interaction is zero.

Panel (b) of Fig. 7 presents the dynamics after the quench of
the anisotropic part of the intermolecular interaction from zero
to medium strength g�1 = 4, keeping the isotropic part equal to
zero. The anisotropic interaction couples not only different
harmonic trap states but also rotational ones, preserving J. It
impacts the spectrum in two ways. Firstly, as showed in ref. 87,
the anisotropic interaction splits each harmonic trap state with
J = 1 into two states, the antisymmetric and symmetric one. The
splitting depends slightly on the harmonic level and is largely
similar across the spectrum, except for the lowest-energy state.
The antisymmetric ground state, resulting from the splitting of
the lowest-energy harmonic state, is brought down rapidly by
the anisotropic part of the interaction. Both effects can be seen
in the DFT of the time evolution of the cloud size in Fig. 7(b) as
well as in the system’s spectrum presented in Fig. 3(a). The
described splitting results in two close ladders of excited
symmetric and antisymmetric eigenstates with frequencies
close to 2o. The ladder of frequencies separated by E1.9o
comes from the couplings between the symmetric states, while
the neighboring ladder starting from E2.1o results from the
couplings between the antisymmetric states. The couplings
with the separated ground state cause an additional ladder
starting for a frequency equal to the energy difference between
the ground energy and the nearest excited antisymmetric state
(here around 4.4o). The ground state’s sensitivity to the aniso-
tropic interaction strength allows for using this frequency as a
quite precise signature of this molecular property. Invisible for
the quench dynamics are states with j1 = j2, as nothing couples
them to the system’s initial state. If the initial state, |C0i, is
antisymmetric, instead of composed solely by |n = 0,J = 1,j1 =
0,j2 = 1i, the only couplings governing the system are the ones
between antisymmetric states. The time evolution of hr̂2i is then
simpler, and the DFT contains no splittings of the main
frequency ladder. If |C0i is chosen to be symmetric, the
couplings to the antisymmetric ground state disappear, render-
ing this quench scenario less sensitive to the anisotropic
interaction strength.

Panel (c) of Fig. 7 shows the time evolution of the cloud size
after quenching both parts of the intermolecular interaction,
i.e., the isotropic part from zero to medium strength g0 = 4 and
anisotropic part from 0 to large strength g�1 = 10. In this case,
the DFT shows a frequency ladder similar to the one observed
in panel (a) and the additional ladder starting from the fre-
quency around 6.5o analogous to the panel (b). However, the
result is not a simple sum of two interaction parts’ effects, but it
rather comes from the competition between them. Firstly,
the ground state, detached from the rest of the spectrum by
the anisotropic part of the interaction, is pushed back up by the
isotropic part, as seen in Fig. 3(a). For a molecular system with
the dominantly isotropic interactions or with an anisotropic
part equal to isotropic, the separated ground state is gone and
the additional ladder in the corresponding DFTs. On the other

hand, the larger frequency at which the additional ladder
starts, the larger is the dominance of the anisotropy over the
isotropy of the intermolecular interaction. The splittings
between ladders starting around 2o are another signature of
the intermolecular interaction. They get negligible small,
resulting in a single ladder, in two cases. The first case is
entering the Tonks–Girardeau regime with a very strong iso-
tropic part of the interaction. Second, when the anisotropic
part of the interaction’s strength is equal to the isotropic one.
This regime corresponds to the metastable gas-like super-
Tonks states,87,111–113 being a molecular equivalent of the
Tonks–Girardeau regime.

The results showed in Fig. 7 and discussed above concern
the system with the total rotational angular momentum J = 1.
They present the possibility of extracting the relative strength of
the anisotropic part of the intermolecular interaction, g�1,
compared to the isotropic part, g0. On the other hand, the
quench analysis of the system with a zero total rotational
angular momentum allows determining g0. The reason is the
lack of the dependence of eigenstates with J = 0 on the
anisotropic part of the intermolecular interaction. Therefore,
to extract the full information about intermolecular interac-
tions, one should start with the interaction quench performed
in the system with J = 0, interpreted as in Fig. 7(a), followed
by the investigation of the quench dynamics of the system with
J = 1 or higher.

3.2.2 The spin–rotation coupling. Fig. 8 presents the
nonequilibrium dynamics of the magnetization, hŜzi, of the
analyzed molecular system with molecular electric spins 1/2
with zero projection of the total angular momentum, Mtot = 0,
after the quench of external electric or magnetic field with
different spin–rotation coupling strengths, g. To see a nontri-
vial time evolution of hŜzi, i.e., its value changing in time with a
significant amplitude, the initial state, |C0i, must be coupled to
a subset of the final eigenfunctions, | ~Cji, with h ~Cj|Ŝz| ~Cj0i a 0.
These conditions are not met in the system without the spin–
rotation coupling, as it is the only part of the Hamiltonian,
which mixes states with different projections of the total spin
angular momentum, MS. Therefore, in general, the smaller g,
the smaller amplitude of hŜz(t)i after a quench of any external
field. However, the presence of the spin–rotation coupling is
not a sufficient condition for the nontrivial dynamics. The
quench of the external fields must also be performed in the
vicinity of the magnetization change, discussed in Section 3.1,
otherwise the value of h ~Cj|Ŝz| ~Cj0i becomes negligibly small.

Panels (a) and (b) of Fig. 8 present the time evolution of the
magnetization, hŜzi, for the system under the constant impact
of the external magnetic field of 3h�o, after the quench of the
electric field from 0 to 7.5 h�o, for the medium (g = 1h�o) and
large (g = 3h�o) spin–rotation coupling strengths, respectively.
The corresponding magnetization diagrams are presented in
panels (a) and (b) of Fig. 4. The initial state of the system, |C0i,
is antisymmetric with J = 1, MJ = 1, and MS = �1. It is composed
predominantly of the |0i harmonic trap state. Firstly, we see
that the amplitude of hŜz(t)i variation increases with the spin–
rotation strength. For a medium g, the hŜzi changes by around
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20% of its value, while for a large g – by 100%. As already stated,
the hŜzi value would be constant without the spin–rotation
coupling.

Secondly, the DFT in insets of panels (a) and (b) of Fig. 8
indicates that the dynamics is governed by a manifold of
couplings. They result from the intermolecular interaction
mixing the harmonic levels, the magnetic field lifting the
degeneracy with respect to the projection of the total spin
angular momentum, MS, the electric field mixing the rotational
states, and finally the spin–rotation coupling, which mixes
states with different J, S, MJ, and MS. The quench aims to
assess the spin–rotation coupling strength, g. Therefore we
compare results from panels (a) and (b). While the number of
present couplings is vast, most of them are negligible, espe-
cially in panel (a). Their impact on the dynamics grows with the
spin–rotation coupling strength. Therefore, while just two
couplings dominate the time evolution of hŜzi for a medium
g, they are joined by many new ones for a large g. In both cases,
the dominant coupling is between the states taking part in the
magnetization change, described in Section 3.1.1. The strength of
this coupling grows with the spin–rotation coupling strength g.

Summing up, in the case of the quench of the electric field,
there are two signatures of the spin–rotation coupling strength
in the time evolution of the magnetization, hŜzi. First is the size
of hŜz(t)i amplitude, which increases with g. Second is the
number of couplings present in the system and the amplitude
of the dominant coupling, increasing with g.

Instead of quenching the electric field strength, the mag-
netic field can also be suddenly turned on. Panel (c) of Fig. 8
shows the time evolution of hŜzi of the studied molecular
system under the influence of the constant electric field of
5h�o, after the quench of the magnetic field from 0 to 4h�o.
The initial state, |C0i, is already impacted by the constant
electric field. It is predominantly |C0i = |n = 0,J = 0,j1 = j2 = 0,S =
0,MS = 0i, but mixed with the symmetric rotational state with j1

and j2 equal to 0 and 1. It also has a significant contribution
from the higher harmonic states (n = 2, 4) due to the inter-
molecular interaction. The selected quench of the magnetic
field does not modify the initial state significantly, so in the end
we probe only couplings between | ~Ci E |C0i and other
eigenstates of the final Hamiltonian. This significantly limits
the number of couplings influencing the dynamics, what is
visible when comparing the corresponding DFTs in Fig. 8.
Moreover, the initial state has hŜzi = 0, therefore the only
significant couplings are between | ~Ci and the eigenstates with
hŜzi a 0, which further limits the number of visible peaks in
the DFT. However, the remaining peaks are related to the
spin–rotation coupling as it is the only part of the Hamiltonian
mixing states with different MS.

In the magnetic field’s quench, the initial state |C0i has the
largest overlap with the fourth excited state of the final Hamil-
tonian, instead of the ground state, as it is in the electric field’s
quench. This means that the couplings governing the dynamics
are not between the states taking part in the system’s magne-
tization change. Moreover, the amplitude of hŜz(t)i variation is
not anymore linearly dependent on the spin–rotation coupling

strength. It grows with the spin–rotation coupling strength till g
reaches medium values, and then remains almost constant.
Different sets of couplings govern these two regimes. The first
regime (small g, hŜz(t)i amplitude p g) is dominated by a single
coupling between | ~Ci E |C0i and the nearest antisymmetric
eigenstate with J = M = 1, MS = �1, and n = 2. This coupling
strength grows with g till g reaches medium values. In the
second regime (larger g, constant hŜz(t)i amplitude), the men-
tioned coupling strength decreases when g grows and a new
coupling, with the ground state of the quenched system, grows.
Competition between two couplings results in the hŜz(t)i ampli-
tude being nearly independent of the spin–rotation strength.
This quench scenario is thus less straightforward to determine
the spin–rotation coupling strength value than the quench of
the electric field. It still allows us to determine g by fitting the
theoretical model to the experimental data.

The quench of the magnetic field strength proves useful also
in determining whether the anisotropic part of the intermole-
cular interaction dominates the system’s properties. As dis-
cussed in the Section 3.1.1, in the system with medium
interaction anisotropy, the main source of coupling between

Fig. 8 The time evolution of the magnetization, hŜzi, of the system of two
interacting molecules with the spins 1/2 and rotational constants B = ph�o
in a one-dimensional harmonic trap, described by the medium isotropic
and anisotropic interaction strengths, g0 = g�1 = 4, and with zero projec-
tion of the total angular momentum, Mtot = 0, after the quench of (a) the
electric field from 0 to dE = 7.5h�o for a system with spin–rotation
coupling g = 1h�o and with the constant magnetic field, mBB = 3h�o, (b)
the electric field from 0 to dE = 7.5h�o for a system with g = 3h�o and
constant magnetic field, mBB = 3h�o, and (c) the magnetic field from 0 to
mBB = 4h�o with g = 1h�o and the constant electric field dE = 5h�o. Insets
present the discrete Fourier transforms of the studied time evolutions.
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states with different MS values is the combination of the electric
field and the spin–rotation coupling. When the electric field is
missing, the main source of such a coupling is the large
anisotropic part of the intermolecular interaction which brings
states with higher rotational angular momenta to lower ener-
gies (see Fig. 5(c)). It means that if the quench scenario from
Fig. 8(c) is performed without the constant electric field, the
nontrivial time evolution of hŜzi indicates that the anisotropic
part dominates the intermolecular interaction.

4 Conclusions

Within this work, we have studied the magnetic properties of
two interacting ultracold polar and paramagnetic molecules in
a one-dimensional harmonic trap. We have focused on the
interplay of the molecular electronic spins, electric dipole
moments, rotational structures, external electric and magnetic
fields, and spin–rotation coupling. We have shown that control
over the molecular system’s magnetization could be achieved
using an external electric field. This result is a complementary
extension of the analogous studies focused on the free-space
collisions. We have also presented the resulting magnetization
diagrams depending strongly on two molecular properties of
the system, namely the spin–rotation coupling and the aniso-
tropic part of the intermolecular interaction. Motivated by the
theoretical and experimental challenges in determining such
molecular properties of few-body systems, we have employed
the quench dynamics to find signatures of the anisotropic
intermolecular interaction strength and the electronic spin–
rotation coupling.

Our findings can be summarized as follows:
� The magnetization of the system can be controlled via

external fields. The main underlying mechanism is the compe-
tition between the Zeeman and Stark effects. The spin–rotation
coupling strength affects the smoothness of the transition
between possible magnetization values.
� The number of accessible magnetization values depends

on selected Mtot of the system, the electronic spins of the
molecules, and the strength of the anisotropic part of the
intermolecular interaction as it brings the states with higher
total rotational momenta to lower energies.
� The time evolution of the system’s cloud size after the

quench of the intermolecular interaction has clear signatures
of the ratio between the anisotropic, g�1, and isotropic, g0, part
of the interaction. In the regime of large g0 or g0 = g�1, the
dynamics is governed by couplings between evenly separated
harmonic states of the system. For g�1 4 g0, the ladder of
additional couplings becomes visible in the Fourier transform
of the time evolution, coming from the antisymmetric ground
state of the system. This ground state is highly sensitive to g�1

and may be used to determine its strength compared to g0.
� The time evolution of the magnetization after the electric

field’s quench depends strongly on the spin–rotation coupling
strength. The larger spin–rotation coupling, the larger is the
amplitude of the magnetization variation and the larger

number of couplings governing the dynamics. It can thus be
used to assess the strength of the spin–rotation coupling in the
molecular system.
� The time evolution of the magnetization after the magnetic

field’s quench is governed by a smaller number of couplings
than after the electric field’s quench. In the studied example, it
is caused by a large similarity of the initial state to one of the
eigenstates of the system after the quench. The dynamics
probes then only couplings to this single eigenstate. While it
may allow to assess the spin–rotation coupling strength, this
scenario serves better for probing the anisotropic part of the
intermolecular interaction.

The presented intrinsic coupling between the electric and
magnetic properties of the studied model system paves the way
towards studying the controlled magnetization of the ultracold
many-body molecular systems trapped in optical tweezers or
optical lattices. The results provide also the first step in study-
ing dynamical magnetic properties of a few-body molecular
systems with varied geometries. The potential applications
range from quantum simulations of molecular multichannel
many-body Hamiltonians to quantum information storing.

The studied model can be extended by including the
fermionic or bosonic statistics of indistinguishable molecules
or allowing dimers to be different. Another direction is to
incorporate the state dependence of molecular characteristics
and trapping potential. The interaction potential with more
realistic dependence on the relative distance between mole-
cules may capture the physics of four-atom complexes that are
now of central interest for ultracold molecular experiments.
Another extension is the more realistic quench dynamics taking
into account all correlations and dependencies between mole-
cular characteristics. A natural extension to the many-body
limit is the double molecular Mott insulator in an optical
lattice with two molecules per site. The present system consti-
tutes exotic monomers for such a system with large total
rotational angular momenta in the ground state and magneti-
zation controllable with the electric field.
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H.-C. Nägerl, Phys. Rev. Lett., 2014, 113, 205301.

67 J. W. Park, S. A. Will and M. W. Zwierlein, Phys. Rev. Lett.,
2015, 114, 205302.

68 X. He, K. Wang, J. Zhuang, P. Xu, X. Gao, R. Guo, C. Sheng,
M. Liu, J. Wang, J. Li, G. V. Shlyapnikov and M. Zhan,
Science, 2020, 370, 331–335.

69 A. L. Collopy, S. Ding, Y. Wu, I. A. Finneran, L. Anderegg,
B. L. Augenbraun, J. M. Doyle and J. Ye, Phys. Rev. Lett.,
2018, 121, 213201.

70 L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky,
L. W. Cheuk, W. Ketterle and J. M. Doyle, Nat. Phys.,
2018, 14, 890.

71 A. Chotia, B. Neyenhuis, S. A. Moses, B. Yan, J. P. Covey,
M. Foss-Feig, A. M. Rey, D. S. Jin and J. Ye, Phys. Rev. Lett.,
2012, 108, 080405.

72 B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. Hazzard,
A. M. Rey, D. S. Jin and J. Ye, Nature, 2013, 501, 521.

73 L. R. Liu, J. D. Hood, Y. Yu, J. T. Zhang, N. R. Hutzler,
T. Rosenband and K.-K. Ni, Science, 2018, 360, 900–903.

74 L. Anderegg, L. W. Cheuk, Y. Bao, S. Burchesky,
W. Ketterle, K.-K. Ni and J. M. Doyle, Science, 2019, 365,
1156–1158.

75 L. W. Cheuk, L. Anderegg, Y. Bao, S. Burchesky, S. S. Yu,
W. Ketterle, K.-K. Ni and J. M. Doyle, Phys. Rev. Lett., 2020,
125, 043401.

76 M. A. Garcı̀a-March, T. Fogarty, S. Campbell, T. Busch and
M. Paternostro, New J. Phys., 2016, 18, 103035.
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