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Quantum simulation of the central spin model with a Rydberg atom and polar
molecules in optical tweezers
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Central spin models, where a single spinful particle interacts with a spin environment, find wide application
in quantum information technology and can be used to describe, e.g., the decoherence of a qubit over time. We
propose a method of realizing an ultracold quantum simulator of a central spin model with XX (spin-exchanging)
interactions. The proposed system consists of a single Rydberg atom (central spin) and surrounding polar
molecules (bath spins), coupled to each other via dipole-dipole interactions. By mapping internal particle states
to spin states, spin-exchanging interactions can be simulated. As an example system geometry, we consider a
ring-shaped arrangement of bath spins and show how it allows us to exact precise control over the interaction
strengths. We numerically analyze two example dynamical scenarios which can be simulated in this setup: a
decay of central spin polarization, which can represent qubit decoherence in a disordered environment, and a
transfer of an input spin state to a specific output spin, which can represent the transmission of a single bit across
a quantum network. We demonstrate that this setup allows us to realize a central spin model with highly tunable
parameters and geometry for applications in quantum science and technology.
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I. INTRODUCTION

The model of a single central spin, interacting with an
environment of bath spins, is of significant scientific inter-
est. In the field of quantum information, such central spin
models can be used to describe a spin qubit immersed in a
spin-bath environment, e.g., an electron in a semiconductor
quantum dot [1–16] or a nitrogen-vacancy center in dia-
mond [17–24]. In that case the model is commonly applied
to analyze the decoherence of the qubit caused by its cou-
pling to a disordered environment. Alternately, central spin
models can be used to represent networks of qubits con-
nected in a spin star topology [25–32], which have been
analyzed for applications such as secure remote quantum
computation [33], qubit state transfer [34,35], approximate
quantum state cloning [36], implementing quantum algo-
rithms [37], or generating entangled states for use in quantum
communication [38].

In recent decades, quantum simulators realized by ultra-
cold particle setups have opened new possibilities of studying
fundamental models of this kind. Quantum simulators allow
us to directly implement desired models with a high degree
of control over the model parameters. This is possible thanks
to developments in experimental techniques, such as optical
tweezer setups which allow us to arrange individual particles
into nearly arbitrary geometries [39–42].

Recently, there has been a number of proposals for simulat-
ing spin models with systems of ultracold molecules [43–53].
These proposals involve encoding spin states in molecular
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rotational levels and exploiting interparticle dipolar interac-
tions to realize effective spin-spin interactions. For example,
spin-exchange processes can be simulated by exchange of
excitations between molecules. Additionally, an interesting
direction is combining such molecular systems with Rydberg
atoms to exploit Rydberg atom properties such as strong
electric polarizability or Rydberg-blockade effects. Several
example proposals for such hybrid systems exist already, in
which Rydberg atoms are used to mediate interactions be-
tween molecules [54–57] or to read out molecular rotational
states [54,56–58]. In a recent experiment, a system of a Ry-
dberg atom and a single polar molecule in optical tweezers
was created, demonstrating the first step toward experimental
implementation of such systems [59].

However, in each of the mentioned proposals, the Rydberg
atoms are treated as an auxiliary system, separate from the
actual system of qubits encoded in polar molecules. A less
explored direction are systems where Rydberg atoms and
molecules are treated on equal footing, which allows us to
realize two-species spin systems. The central spin model can
be seen as such a two-species system, since its particle are
divided into the central spin and the bath spins.

In this paper, building upon the earlier proposals for
molecule-based spin-model implementations, we propose a
quantum simulator realizing a central spin model. The system
is composed of a single Rydberg atom playing the role of a
central spin and a number of polar molecules playing the role
of bath spins. The setup realizes an effective spin Hamilto-
nian, where the particles’ internal states represent levels of
1/2-spin particles, while dipole-dipole interactions between
the atom and the molecules map to effective spin-spin inter-
actions. An external magnetic or electric field can be used
to tune the atomic transition between pseudospin states into
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resonance with a molecular transition, enabling resonant “spin
exchange” between the particles.

Rydberg atoms are particularly advantageous for this pur-
pose because their transition frequencies can be easily tuned
even with small fields. The use of Rydberg atoms also pro-
vides an additional benefit due to their significantly larger
dipole moments compared with molecular dipole moments.
As a result of this, the effective bath-bath spin interactions are
weak in comparison to the effective central-bath interactions
and can therefore be neglected. This is significant, since most
investigations of central spin models focus on models with
vanishing bath-bath interactions.

In weak electric fields, molecules have only negligible
space-fixed dipole moments, so diagonal interaction terms
(corresponding to effective z-z central-bath spin interactions)
are negligible. The above properties result in the realization
of an effective XX central spin model, where the only in-
teractions considered are spin-exchanging couplings between
the central spin and each of the bath spins. The experimental
realization of the proposed setup should be feasible in present
ultracold physics laboratories.

To more fully explore the different parameter regimes of
the simulated Hamiltonian, we suggest combining this setup
with a particular tweezer geometry, where the molecules are
arranged on a ring around the central spin. The ring can
be effectively tilted by changing the direction of the ap-
plied external field, which modifies the inhomogeneity of the
bath-central spin couplings. This allows us to realize both
homogeneous models, where all the bath particles interact
with the central spin with equal strength, and inhomogeneous
models. Both these cases show distinct spin dynamics and are
subjects of interest in the central spin model literature.

To demonstrate applications of the proposed ring setup,
we numerically analyze the system’s time evolution in two
example scenarios. In the first scenario, we simulate the deco-
herence of a qubit in a disordered environment by analyzing
the evolution of an initially polarized central spin. The central
spin polarization decays over time, and the timescale of this
decay, depending on the coupling strengths, can be regulated
by changing the ring angle. In the second scenario, we simu-
late a transmission of a single bit across a quantum network.
We set an input bath spin to an up-spin or down-spin state
initially and find that, over time, the state of this input spin is
transferred to a specific output bath spin which has the same
interaction strength. The transfer timescale can be controlled
by setting the ring angle.

While the presented model is relatively simple, it can serve
as a demonstration of the capabilities of quantum simulators
which combine atoms with polar molecules. In light of the
increasing interest in such systems and future experimental
realization, it is valuable to explore the possibilities offered by
this approach. Furthermore, this approach can be extended to
larger systems, including systems that are not easily tractable
numerically and can especially benefit from experimental
quantum simulation.

This paper is organized as follows. In Sec. II, we describe
the proposed setup and derive the effective spin Hamiltonian.
In Sec. III, we consider a ring-shaped particle arrangement,
and we show how this setup allows us to smoothly tune the
inhomogeneity of interactions. In Sec. IV, we demonstrate
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FIG. 1. (a) An example Nbath = 6 atom-molecule system trapped,
e.g., in optical tweezers. Each molecule k = 1, . . . , Nbath is placed
at a position �Rk from the atom at the center. An external electric
(magnetic) field �Edc ( �B) is used to tune the particle transition frequen-
cies as needed and determines the space-fixed quantization axis. The
depiction of molecules is schematic; in reality, typically we assume
a weak electric field, where molecules do not display significant
orientation along any direction. (b) A schematic depiction of the
central spin model realized by the above setup. The atom acts as the
central spin �S(0) and each molecule k acts as a bath spin �S(k), which
interacts with the central spin with strength Ck .

the effective spin dynamics, showing how the tuneable in-
homogeneity of interactions affects the resulting dynamics.
Section V discusses more deeply various experimental aspects
of this setup. Section VI is the conclusion.

II. THE MODEL

A. The atom-molecule system

The considered system [Fig. 1(a)] consists of a single
Rydberg atom (central spin) and Nbath surrounding polar
molecules (bath spins). The particles are treated as fixed in
their positions, with each molecule k = 1, . . . , Nbath placed at
a position �Rk relative to the atom. We assume the trapping is
tight enough that the extent of the particle wave functions is
much smaller than the interparticle distances. Therefore we
treat the particles as pointlike objects, ignoring their motional
or trap states.

Such a system can be realized experimentally with optical
tweezer setups, which allow us to arrange particles into de-
sired geometries. In this paper, the atom-molecule distances
are taken to be |Rk| = 1.5 µm for all k. This is consistent with
limitations on minimum separation of tweezer traps, which is
determined roughly by the wavelength of the trapping light.

The system is also subjected to an external spatially uni-
form dc electric field �Edc, and/or an external magnetic field
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�B (with �Edc ‖ �B if both are present). Their main purpose
is tuning a specific atomic transition into resonance with a
molecular transition, which enables the simulation of spin-
exchange interactions between the atom and the molecules.
Additionally, the fields determine the direction of a space-
fixed quantization axis.

The Hamiltonian of the system can be written as

Ĥ = ĥRyd +
Nbath∑
k=1

ĥ(k)
mol +

Nbath∑
k=1

V̂ (k)
atom−mol. (1)

The terms ĥRyd and ĥ(k)
mol describe the single-particle internal

states of the Rydberg atom and molecules k = 1, . . . , Nbath,
respectively, also taking into account the particle interactions
with external fields. The last term describes electric dipole-
dipole interactions between the atom and the molecules.
Interactions between the molecules are neglected, since they
are weak compared with the atom-molecule interactions (all
energies throughout this paper are expressed in h̄ × 2π × Hz;
for simplicity, we take h̄ = 1).

We now examine each term of the Hamiltonian in Eq. (1) in
detail. First we examine the electric dipole-dipole interaction∑

k
V̂ (k)

atom−mol. The term describing an interaction between the

atom and the molecule k = 1, . . . , Nbath is

V̂ (k)
atom-mol = 1

4πε0

�̂D · �̂d (k) − 3( �̂D · �ek )( �̂d (k) · �ek )

|Rk|3 . (2)

Here �ek = �Rk/| �Rk|, while �̂D ( �̂d (k)) is the electric dipole mo-
ment operator acting on the atom (on the molecule k). The
operator components D̂q, d̂ (k)

q can be written in terms of the
spherical coordinate system, where basis vectors are labeled
by q = 0,±1: �e0 ≡ �eZ , �e±1 ≡ ∓(�eX ± i�eY )/

√
2 (we refer to

spatial coordinates X,Y, Z with capital letters, to avoid confu-
sion with the effective spin components x, y, z in the simulated
spin model). The quantization axis �e0 is defined to be parallel
to the externally applied fields, so that �Edc = Edc�e0, �B = B�e0.

The interaction in Eq. (2) can be rewritten as a scalar
product of two second-rank tensors, which correspond, re-
spectively, to spherical harmonics and to the tensor product
of dipole moment operators [60]. Omitting the complicated
calculations, the result can be written out as follows:

V̂ (k)
atom-mol =

+1∑
q′,q=−1

v
(k)
q′;qD̂q′ d̂ (k)

q , (3)

where

v
(k)
0;0 = 2v

(k)
+1;−1 = 2v

(k)
−1;+1 = 1 − 3 cos2 θk

4πε0|Rk|3 , (4)

v
(k)
0;±1 = v

(k)
±1;0 =

± 3√
2

sin θk cos θke∓iφk

4πε0|Rk|3 , (5)

v
(k)
±1;±1 = − 3

2 sin2 θke∓i2φk

4πε0|Rk|3 . (6)

Here θk is the polar angle of �Rk (cos θk = �Rk · �e0/|Rk|) and φk

is the azimuthal angle of rotation about the �e0 axis. Note that
V̂ (k)

atom-mol is unaffected by choice of the X axis, as choosing
a different X axis amounts to transforming the angles as

φk → φk + δφ and, simultaneously, transforming the dipole
operators as D̂±1, d̂±1 → D̂±1 exp(±iδφ), d̂±1 exp(±iδφ).

We next examine the Hamiltonian term for the atom, ĥRyd.
We assume an alkali-metal atom, for which the term can be
written as

ĥRyd=
∑

n,l, j,mj

En,l, j,mj |n, l, j, mj〉〈n, l, j, mj |+ĥE;atom+ĥB;atom.

(7)

The states |n, l, j, mj〉 are the fine-structure basis states of
the internal atomic Hamiltonian in zero external field, which
have energies En,l, j,mj degenerate in mj . They are labeled with
the usual fine-structure quantum numbers, including the total
angular momentum j and its projection mj on the quantiza-
tion axis �e0. The terms ĥE;atom, ĥB;atom describe the atom’s
interaction with the external electric and magnetic field, re-
spectively. Details on these interaction terms can be found,
e.g., in Ref. [61], and will not be discussed at length here.

In the limit of no external fields (ĥE;atom, ĥB;atom = 0),
the eigenstates of Eq. (7) are the levels |n, l, j, mj〉. As the
external fields are increased from zero, the eigenstates of
Eq. (7) instead become superpositions of various |n, l, j, mj〉
with different n, l , and j. We can write these field-dressed
eigenstates as |n, l, j, mj〉, labeling them with the quantum
numbers of their adiabatic counterparts in the zero-field limit.
The corresponding dressed eigenenergies, which are no longer
degenerate in mj , can be written as En,l, j,mj . The ĥRyd term can
be accordingly written in a diagonal form in this field-dressed
basis:

ĥRyd =
∑

n,l, j,mj

En,l, j,mj |n, l, j, mj〉〈n, l, j, mj |.

The dressed eigenenergies En,l, j,mj at given Edc or B, and the
composition of |n, l, j, mj〉 in terms of the zero-field levels,
can be obtained numerically. For this purpose, in this paper
we have used the open-source ARC [62] and PAIRINTERACTION

[63] libraries for Python. Note that, in fields parallel to �e0,
the dressed states |n, l, j, mj〉 retain mj as a good quantum
number, even as n, l, j cease to be good quantum numbers.

The D̂q operators can couple different atom levels. The
most important selection rule of this coupling is �mj = q.
The coupling also has specific selection rules in terms of l
and j [63], although those rules become less important at
strong external fields which mix states with different l, j.
The corresponding off-diagonal matrix element (transition
dipole moment) for a coupling between two given levels can
be calculated numerically, e.g. using the libraries mentioned
above. Transitions between levels with neighboring principal
quantum numbers (n → n ± 0, 1) are the strongest, and the
corresponding dipole matrix elements can have values up to
≈n2ea0 [64].

In this paper, we focus on Rydberg states with n ≈
50. These values of n are convenient, because the atomic
transition dipole moments are large enough (around ≈5 ×
103 debye) to result in strong interactions. Meanwhile, the
Rydberg electron orbit radius ≈a0n2 ≈ 0.13 µm is still sig-
nificantly smaller than the interparticle distances 1.5 µm. This
ensures that the Rydberg electron orbit does not overlap the
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molecule positions, and that the atom-molecule interaction
can be treated as interaction between point dipoles.

Finally, let us examine the ĥ(k)
mol term, which describes the

internal states of molecule k. In this paper, we assume polar
diatomic molecules in the lowest vibrational state of a ground
� electronic state, which have a relatively simple eigenstate
spectrum. Each term ĥ(k)

mol can be written as

ĥ(k)
mol =

∑
N,F,MF

EN,F,MF |(N, F, MF )(k)〉〈(N, F, MF )(k)|

+ ĥ(k)
E;mol + ĥ(k)

B;mol. (8)

The states |(N, F, MF )(k)〉 are the hyperfine-split basis states
of the internal molecular Hamiltonian in zero external field,
with energies EN,F,MF . They are labeled by the good quantum
numbers in zero field: the rotational angular momentum N =
0, 1, 2, . . ., the total angular momentum F = 0, 1, 2, . . ., and
the projection of F on the quantization axis, MF = −F,−F +
1, . . . ,+F . The term ĥ(k)

E;mol (ĥ(k)
B;mol) describes the interaction

of the molecule with a nonzero external electric (magnetic)
field.

In the zero-field limit, the eigenstates of ĥ(k)
mol are the basis

states |(N, F, MF )(k)〉. In nonzero external fields, the eigen-
states of ĥ(k)

mol are linear combinations of molecular eigenstates
with different F , but N and MF remain good quantum num-
bers. We refer to the resulting field-dressed eigenstates as
|(N, F, MF )(k)〉, labeling them after their adiabatic counter-
parts in the zero-field limit. The field-dressed eigenstates,
and their energies EN,F,MF , can be found by direct numerical
diagonalization of ĥmol (as described in Appendix A 1). As
a concrete example, in Appendix A 1 we write out ĥmol in
full, for a molecule of an example species 40Ca 19F, showing
how its eigenstates change with increasing external fields.
Similarly as in the case of ĥRyd, we can write the term Eq. (8)
in diagonal form in the field-dressed basis:

ĥ(k)
mol =

∑
N,F,MF

EN,F,MF |(N, F, MF )(k)〉〈(N, F, MF )(k)|. (9)

The d̂ (k)
q operators can couple different molecular levels.

This coupling has a number of selection rules, but for our pur-
poses, the most significant rules are �MF = q and �N = ±1.
The associated transition dipole moments are proportional
to the molecule internuclear (body-fixed) dipole moment
d [60]; in typical species used for ultracold experiments,
d ∼ 1 debye. On the other hand, the permanent (space-fixed)
dipole moments 〈N, F, MF |d̂0|N, F, MF 〉 are zero in the zero-
field limit and only become non-negligible in electric fields
strong enough to mix levels of different N . In this paper, we
consider only much weaker electric fields, and so we regard
the permanent molecular dipole moments as zero.

Given the �N = ±1 selection rule, any effective spin ex-
changes mediated by dipolar interactions must occur between
molecular levels with different N . Such pairs of levels are
separated by energies on the order of the molecule’s rota-
tional constant Brot, which dictates the largest energy scale
appearing in the effective spin Hamiltonian. In typical polar
molecules of interest to the ultracold community, Brot ranges
from several hundred megahertz (e.g., 2π × 353 MHz for
RbYb [65]) to several gigahertz (e.g., 2π × 10.3 GHz for

CaF [66]). For Rydberg atom states with n ≈ 50, transition
frequencies between neighboring n can also be on the order of
a few GHz, making it easier to tune them into resonance with
the molecular transitions.

Finally, we note a few limitations imposed by using Ryd-
berg atoms. Since Rydberg states will play the role of effective
spin states, the maximum simulation time is limited by their
radiative lifetimes. A rough estimate for this lifetime in the
zero-temperature limit is on the order of ≈n3 × 10−9 s [61],
which for n ≈ 50 is ≈ 1 × 10−4 s. This limits the minimal
relevant energy scales, since any Hamiltonian terms <2π ×
104 Hz are essentially irrelevant for dynamics within the sim-
ulation time.

For example, the largest matrix elements for the
molecule-molecule dipole-dipole interactions are of order
d2/[4πε0(Rk − Rk′ )3]. For distances Rk − Rk′ ≈ 1 µm and
typical molecule transition dipole moments d ∼ 1 debye, in-
termolecular interaction strengths are on the order of ≈2π ×
1.5 × 102 Hz, so neglecting them in the Hamiltonian is in-
deed justified. On the other hand, assuming atomic transition
dipole moments ∼103 debye and distances Rk = 1.5 µm, the
atom-molecule dipole-dipole interactions can be on the order
of between ≈2π × 104 Hz and ≈2π × 105 Hz, and thus are
relevant.

Using Rydberg states also limits the maximum electric
field strength Edc, since Rydberg atoms ionize in strong elec-
tric fields. A rough estimate for the ionization threshold field is
≈(16n4)−1h̄2/(emea3

0) [61]. For n ≈ 50 this gives a maximum
electric field Edc ≈ 50 V/cm.

B. Derivation of the effective spin Hamiltonian

Our goal is now to rewrite the Hamiltonian of Eq. (1)
into an effective 1/2-spin Hamiltonian, in which the Rydberg
atom plays the role of central spin �S(0), while molecules
k = 1, . . . , Nbath play the role of bath spins �S(k) [as depicted
in Fig. 1(b)]. Specifically, we derive an effective Hamiltonian
of the form

Ĥeff =c0Ŝ(0)
z + cS

Nbath∑
k=1

Ŝ(k)
z +

Nbath∑
k=1

(CkŜ(0)
+ Ŝ(k)

− + C∗
k Ŝ(0)

− Ŝ(k)
+ ),

(10)

corresponding to the XX central spin model. This Hamil-
tonian includes an effective constant Zeeman field c0 (cS)
acting on the central (bath) spins, as well as a spin-exchange
interaction between the central spin and the bath spins, with
coupling constants Ck . The one-body terms with Ŝ(0)

z , Ŝ(k)
z in

Eq. (10) originate from the single-particle terms ĥRyd, ĥ(k)
mol

of the system Hamiltonian, while the spin-exchange terms
originate from the atom-molecule interactions V̂ (k)

atom-mol.
The XX central spin model belongs to the family of XXZ

central spin models, which feature anisotropic interactions of
the form Ŝ(k)

x Ŝ(0)
x + Ŝ(k)

y Ŝ(0)
y + λŜ(k)

z Ŝ(0)
z , where λ varies. The

XX model (λ = 0) in particular has a number of interesting
properties. It is fully integrable, and its entire eigenspectrum
can be found via Bethe ansatz methods. Additionally, for
inhomogeneous Ck , it is the only XXZ model to have dark
eigenstates, in which the central spin is fully polarized and
completely unentangled with the bath. Spectral properties
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of the XX model have been studied, e.g., in Refs. [67–69],
and analytical expressions for its dynamics are available for
specific initial states [70,71]. With regard to practical applica-
tions, the XX central spin model can describe, e.g., an electron
in a semiconductor quantum dot, interacting with an external
magnetic field which cancels out its z-z interactions with the
bath [72,73]. It can also arise in resonantly driven spin systems
in rotating frames [74–77].

1. Defining the effective spin states

To simulate the 1/2-spin model in our setup, first we
choose a pair of internal atom (molecule) states to act as
central (bath) spin states, and we treat each particle as a
two-level system. The two central spin states are denoted
as |⇑〉, |⇓〉, i.e., up and down respectively, while the two
states of bath spin k are denoted |↑(k)〉, |↓(k)〉 (i.e., we
use the superscript k to indicate a state from the Hilbert
subspace associated with particle k). Further in the paper,
we use the following compact notation for product states:
|⇑; ↓(k)〉 ≡ |⇑〉 ⊗ |↓(k)〉, etc., and |⇑; ↑(1),↓(2), . . . ,↑(N )〉 ≡
|⇑〉 ⊗ |↓(1)〉 ⊗ |↑(2)〉 ⊗ . . . ⊗ |↑(N )〉.

We denote the energies of the chosen atomic states as E⇑,
E⇓, and the difference between their quantum numbers mj

as δmj ≡ mj⇑ − mj⇓. Similarly, we denote the energies of
molecular states as E↑, E↓, and the difference of their quantum
numbers MF as δMF ≡ MF ↑ − MF ↓.

We can define the associated (dimensionless) identity and
spin operators as

1̂(0) = |⇓〉〈⇓| + |⇑〉〈⇑|,
Ŝ(0)

z = 1
2 |⇑〉〈⇑| − 1

2 |⇓〉〈⇓|,
Ŝ(0)

+ = |⇑〉〈⇓|,
Ŝ(0)

− = |⇓〉〈⇑|,
1̂(k) = |↓(k)〉〈↓(k)| + |↑(k)〉〈↑(k)|,
Ŝ(k)

z = 1
2 |↑(k)〉〈↑(k)| − 1

2 |↓(k)〉〈↓(k)|,
Ŝ(k)

+ = |↑(k)〉〈↓(k)|,
Ŝ(k)

− = |↓(k)〉〈↑(k)|, (11)

with 1 � k � Nbath.
There are a few criteria for choosing the pseudospin

⇑,⇓ and ↑,↓ states. First, the V (k)
atom-mol term must be able

to realize the effective spin exchange, i.e., the matrix ele-
ments 〈⇑; ↓(k)|V̂ (k)

atom-mol|⇓; ↑(k)〉 must be nonzero. Therefore
the atomic transition dipole moment μ� = 〈⇑|D̂δmj |⇓〉 and

the molecular transition dipole moment μ� = 〈↑(k)|d̂ (k)
δMF

|↓(k)〉
should be nonzero. Usually, μ�, μ� should also be as large
as possible to maximize the interaction magnitudes |Ck|. This
is to ensure that the interaction timescales ≈1/|Ck| are much
smaller than the maximum simulation time. In the rigid-rotor
molecule, the strongest transition dipole moment is that which
corresponds to the N = 0 ↔ N = 1 transition. Therefore, a
pair of levels with N = 0, N = 1 is the optimal choice for the
bath spin states. Similarly, for the atomic transition, a good
choice is a n → n or n → n ± 1 transition.

The next criterion is that the spin-exchange process
|⇑; ↓(k)〉 ↔ |⇓; ↑(k)〉 must be energetically resonant. That is,
its associated energy change |c�| = |(E⇑ − E⇓) − (E↑ − E↓)|
should be smaller than the magnitude of the interaction ma-
trix element 〈⇑; ↓(k)|V (k)

atom-mol|⇓; ↑(k)〉, which is on order of
≈μ�μ�(4πε0|Rk|3)−1. Simultaneously, E⇑ − E⇓ and E↑ − E↓
must be large enough that processes changing the total spin,
such as |⇑; ↓〉 ↔ |⇑; ↑〉, are not energetically resonant. This
latter condition is easily fulfilled in our system, where molecu-
lar and atomic transitions have frequencies of ≈2π × 109 Hz
magnitudes, whereas the atom-molecule dipolar interactions
are at most of order ≈2π × 105 Hz at the assumed interparti-
cle distances.

The final criterion is that, once excited into the pseu-
dospin states, the particles must stay within the pseudospin
basis throughout the entire simulation. Thus, any interaction
process involving a transition from a pseudospin to a nonpseu-
dospin state must be suppressed (either disallowed by electric
dipole selection rules, or energetically off-resonance).

To fulfill the criterion of a small mismatch c�, the external
electric or magnetic field can be used to tune the atomic
and molecular transition frequencies into resonance. Using a
magnetic field has the advantage of lifting the degeneracies
between atomic (molecular) levels with different mj (MF ),
making it easier to avoid accidental resonant transitions to
states outside the pseudospin basis. Using an electric field lifts
degeneracies only between levels with different |mj | (|MF |),
and so it may be insufficient by itself. It is possible to combine
an electric and a magnetic field, to more precisely adjust the
energy spectra, at cost of greater experimental complication.

2. Deriving the effective spin-exchange coupling

By projecting the dipole operators D̂q (d̂ (k)
q ) in V̂ (k)

atom-mol

[Eq. (3)] on the states |⇑〉, |⇓〉 (|↑(k)〉, |↓(k)〉), and neglecting
all the small or off-resonant terms in V̂ (k)

atom-mol, the interaction
can be written as

V̂ (k)
atom-mol = Ck|⇑〉〈⇓||↓(k)〉〈↑(k)| + H.c.

= CkŜ(0)
+ Ŝ(k)

− + C∗
k Ŝ(0)

− Ŝ(k)
+ . (12)

The effective coupling constant Ck is given by

Ck = 〈⇑; ↓(k)|V̂ (k)
atom-mol|⇓; ↑(k)〉. (13)

More specifically,

Ck =
∑
q,q′

v
(k)
q′;q〈⇑|D̂q′ |⇓〉〈↓(k)|d̂ (k)

q |↑(k)〉

= v
(k)
δmj ;−δMF

μ�(−1)δMF μ�. (14)

For example, suppose that ⇑ and ⇓ are chosen as two
atomic states with δmj = 0, while ↑ and ↓ are chosen as two
molecular levels with δMF = 0. Then we have

Ck = v
(k)
0;0〈⇑|D̂0|⇓〉〈↓(k)|d̂ (k)

0 |↑(k)〉
= μ�μ�

4πε0|Rk|3 (1 − 3 cos2 θk ). (15)

Therefore, the choice of pseudospin states determines both
the overall magnitude of Ck (via the values of μ�, μ�) and
its angular dependency (via the values of δMF and δmj).
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Significantly, the resulting effective spin interaction
[Eq. (12)] does not include diagonal terms (of the form
∝Ŝ(0)

z Ŝ(k)
z ). This is because the diagonal matrix elements of the

interaction, such as 〈⇑; ↓(k)|V (k)
atom-mol|⇑; ↓(k)〉, are proportional

to the molecular permanent dipole moments, which makes
them negligible.

It is important to note that Ck may be negative, and even
may be complex (if δMF �= δmj). However, for the XX cen-
tral spin Hamiltonian, it is possible to effectively modify the
phase of any Ck for the purposes of time evolution, simply
by appropriately modifying the initial state. This procedure is
described in Appendix B.

Finally, we note that if the molecular spectrum includes
degenerate levels, it is possible to define the pseudospin states
as linear combinations of such levels. This can result in Ck

taking forms other than Eq. (13). See Appendix C 1 for details.

3. Deriving the one-body effective spin terms

The one-particle terms ĥRyd and ĥ(k)
mol in the Hamiltonian of

Eq. (1) are straightforward to convert to effective spin operator
form. Projecting them on the states |⇑〉, |⇓〉 (|↑(k)〉, |↓(k)〉), we
get

ĥRyd = E⇑|⇑〉〈⇑| + E⇓|⇓〉〈⇓| (16)

= c0Ŝ(0)
z + E⇑ + E⇓

2
1̂(0),

ĥ(k)
mol = E↑|↑(k)〉〈↑(k)| + E↓|↓(k)〉〈↓(k)|

= cSŜ(k)
z + E↑ + E↓

2
1̂(k), (17)

where the coefficients are given by

c0 = E⇑ − E⇓, (18)

cS = E↑ − E↓. (19)

After discarding the constant parts in Eqs. (16) and (17),
we finally arrive at an effective spin Hamiltonian of the form
given in Eq. (10). The obtained values of the parameters
c0, cS,Ck are given by Eqs. (18), (19), and (13), respectively.

The Hamiltonian in Eq. (10) conserves the total spin z
component, defined as

σ̂z = Ŝ(0)
z +

Nbath∑
k=1

Ŝ(k)
z , (20)

and therefore it can be also written as

Ĥeff = c�Ŝ(0)
z + cSσ̂z +

Nbath∑
k=1

(CkŜ(0)
+ Ŝ(k)

− + C∗
k Ŝ(0)

− Ŝ(k)
+ ), (21)

where the energy mismatch c� = c0 − cS . In fact, for certain
initial states, 〈cSσ̂z〉 is a constant. This happens if the initial
state is a linear combination of product states which all have
the same value of 〈σ̂z〉. In that case, the system evolution acts
as if governed by the Hamiltonian

Ĥ ′
eff = c�Ŝ(0)

z +
Nbath∑
k=1

(CkŜ(0)
+ Ŝ(k)

− + C∗
k Ŝ(0)

− Ŝ(k)
+ ), (22)

with an effective Zeeman field acting only on the central spin.

C. Numerical dynamics simulation

To obtain the dynamics, we simulate the time evolution
of the system numerically by exact diagonalization of the
Hamiltonian. First, we define a many-body basis, made up of
all the possible 21+Nbath product states |S(0); S(1), . . . , S(Nbath )〉
where S(0) ∈ {⇑,⇓} and S(k) ∈ {↑(k),↓(k)}. The Hamiltonian
in Eq. (10) is diagonalized in that basis (using the standard
LAPACK diagonalization routines) to find its eigenstates |K〉
and eigenenergies EK . Then, for an arbitrary initial state |�0〉,
the system state at any time t is given by

|�(t )〉 = e−iĤeff t |�0〉 =
∑
{|K〉}

(e−iEK t 〈K|�0〉)|K〉. (23)

To reduce the complexity of the calculations, we exploit the
fact that the total spin z projection σz [Eq. (20)] is conserved.
Therefore, to find the evolution of a given initial state, usually
we can consider only a small part of the entire basis. For
example, for an initial state |⇑; ↓1 . . . ↓Nbath

〉, only states with
one spin up (which are only Nbath + 1 in number) need to be
included in the basis. This allows us to obtain the accurate
time evolution efficiently, without needing to use more com-
plicated numerical techniques.

D. Possible parameter ranges of the effective Hamiltonian

It is useful to estimate the experimentally obtainable ranges
of parameters cS , c0, and Ck . The coupling coefficients Ck

are dependent on �Rk , and can be quite freely adjusted by
placing the molecules at different positions. With realistic
values of transition dipole moments, μ� ≈ 1 debye and μ� ≈
5 × 103 debye, for atom-molecule distances Rk = 1.5 µm the
interaction strengths μ�μ�/(4πε0|Rk|3) are typically on the
order of 2π × 105 Hz. The interaction can potentially be in-
creased further by using molecule species with larger dipole
moments, atomic transitions with larger μ�, or by moving
the molecules closer to the atom, although the distance |Rk|
cannot be made arbitrarily small due to experimental limits
on positioning optical tweezers and the finite size of Rydberg
atoms.

In contrast, c0, cS are mostly outside of the experimenter’s
direct control. They depend primarily on the frequency of
the chosen molecular transition, which is determined by
the rotational constant of the molecular species. The rota-
tional constant, in principle, can be modified by exciting
the molecule to higher vibrational levels, but this change is
usually small, and molecular dipole moments decrease with
vibrational excitations.

The values of cS and c0 are typically much larger than
the interaction strengths. This can cause difficulties in pre-
serving phase relations between components of the system
wave function |�(t )〉 that have different total spin z projec-
tion 〈σz〉. The phase differences between those components
will oscillate with frequencies on the order ≈cS . Unless the
system can be controlled on timescales 1/cS (typically of
nanosecond order or less, much smaller than the microsecond
timescales required if Ck is the only energy scale), prop-
erly preserving phase information is difficult. Although this
is not a fundamentally unsurmountable difficulty, it would
complicate experimental implementation. This difficulty is
irrelevant, however, if the initial state consists only of product
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states |S(0); S(1), . . . , S(Nbath )〉 which all have the same value
of 〈σ̂z〉. Then the dynamics, being governed by the effective
Hamiltonian H ′

eff [Eq. (22)], are only affected by the differ-
ence c�, which can be set to small values with external fields.

E. Choice of atomic and molecular species

1. Possible species of atom and molecules

There exists a wide variety of atomic and molecular species
that can be used to realize the proposed setup. For the atomic
species, a highly suitable choice are alkali-metal atoms, which
are relatively easy to cool to ultracold temperatures due to
their favorable electronic structure. Trapping single ultracold
alkali-metal atoms in optical tweezers has been extensively
demonstrated [78–81].

For the molecular species, a suitable choice are molecules
which can be reliably cooled to the ground state and trapped in
optical tweezers. Preferably, they should have a strong dipole
moment, resulting in strong interactions. One class of such
species are diatomic alkali-metal molecules (with a 1� ground
state), which typically have relatively strong dipole moments
d of several debyes. Examples are LiCs with d = 5.5 debye or
NaCs with d = 4.6 debye [82]. Alkali-metal dimers have been
already successfully prepared in electronic and rovibrational
ground states, as demonstrated for KRb [83] and LiCs [84].
NaCs molecules in desired internal states have been created in
optical tweezers [85–88], and very recently RbCs molecules
were obtained as well [89].

An even more promising category are molecules in 2�
or 3� states, which contain unpaired electron spins. Such
molecules are highly tunable via magnetic fields thanks to
their high magnetic moment. Even moderate fields of a few
hundred Gauss can create energy splittings large in compar-
ison to the interaction strengths, making it easier to prevent
resonant transitions to unwanted molecular states. A prime
example of such species are CaF molecules with a 2� ground
state, which have been cooled and trapped in optical tweezers
in several experiments [39,90–94]. Other promising examples
include SrF (which has been successfully cooled to ultracold
temperatures [95]) as well as dimers consisting of an alkali-
metal atom combined with closed-shell alkaline-earth-metal
atoms. Many of these species have the required strong electric
dipole moments, for example CaF with 3.07 debye [96] or SrF
with 3.47 debye [97].

2. Example choice of atom and molecule pair

As a specific example of an usable atom-molecule combi-
nation, here we will consider a system composed of 40Ca 19F
molecules as the bath spins and a 39K atom as the central spin.
Assume the electric field is set to zero, while the magnetic
field is set to a particular value Bres = 818.1 G. We desig-
nate the following field-dressed 40Ca 19F levels as bath spin
states:

|↓(k)〉 = |(N = 0, F = 0, MF = 0)(k)〉, (24)

|↑(k)〉 = |(N = 1, F = 1−, MF = 0)(k)〉 (25)

(there are two N = 1, F = 1 hyperfine manifolds in the
40Ca 19F spectrum; we use F = 1− to distinguish the lower-

FIG. 2. (left) Gray lines correspond to the n = 52, l = 2, j =
5/2 and n = 53, l = 1, j = 3/2 energy levels of a 39K atom in a
magnetic field of 818.1 G. Two of the energy levels (enclosed in
boxes), differing in energy by c0, are chosen as pseudospin states
|⇑〉, |⇓〉. The two levels can be coupled by the action of the electric
dipole operator D̂0, as shown. The state energies are shown relative
to the K atom’s ionization level. (right) Gray lines correspond to
the N = 0 and N = 1 energy levels of a 40Ca 19F molecule, in the
same magnetic field. Two of the energy levels, differing in energy by
cS , are chosen as pseudospin states |↑〉, |↓〉. The two levels can be
coupled by the action of the electric dipole operator d̂0, as shown. At
this magnetic field, the atomic transition energy c0 and the molecular
transition energy cS differ by a value c� = 2π × 19 kHz. (The place-
ment of the energy levels on the vertical axis is schematic and does
not reflect actual proportions between state energies.)

energy one). When dressed by the given magnetic field, these
levels can be even more conveniently described in terms of the
uncoupled molecular state basis (described in Appendix A 1):

|↓(k)〉 ≈
∣∣∣(N = 0, MN = 0, Ms = − 1

2 , MI = + 1
2

)(k)
〉
, (26)

|↑(k)〉 ≈
∣∣∣(N = 1, MN = 0, Ms = − 1

2 , MI = + 1
2

)(k)
〉
. (27)

The numerically calculated molecular transition dipole mo-
ment is μ� ≡ 〈↑(k)|d̂ (k)

0 |↓(k)〉 = d/
√

3 = 1.77 debye.
The central spin states are taken as the following atomic

Rydberg levels:

|⇓〉 =
∣∣∣n = 53, l = 1, j = 3

2 , mj = + 3
2

〉
, (28)

|⇑〉 =
∣∣∣n = 52, l = 2, j = 3

2 , mj = + 3
2

〉
. (29)

In the magnetic field Bres, the |⇓〉 state is unchanged from
its zero-field form, while the |⇑〉 state is dominated by an
admixture of |n = 52, l = 2, j = 5/2, mj = +3/2〉. The nu-
merically calculated atomic transition dipole moment is μ� ≡
〈⇑|D̂0|⇓〉 = 3626.87 debye. A schematic overview of the
chosen atomic and molecular pseudospin states is shown in
Fig. 2. The relevant parts of the atomic and molecular spectra
are shown in more detail in Fig. 9 in Appendix A.

The magnetic field Bres = 818.1 G is an optimal value at
which the transition frequencies cS, c0 are almost equal, with
a minimal residual difference c� = 2π × 19 kHz (as shown
in Fig. 2). Bres has been determined by numerical calculation,
to within a limited accuracy of 0.1 Gauss (hence c� has a
residual nonzero value). This reflects the fact that, in real
experiments, the ability to control B is limited by environmen-
tal field fluctuations and other sources of error. Realistically,
in experiments the magnetic field might be controllable with
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TABLE I. Relevant physical parameters of the 39K – 40Ca 19F
hybrid system in a magnetic field B = Bres, tuned to equalize the
transition frequencies c0, cS . † marks atomic state properties obtained
by a calculation with the Python PAIRINTERACTION package. ‡ marks
atomic radiative lifetimes, obtained by a calculation with the Python
ARC package [62]. Radiative atomic state lifetimes are calculated for
the 0 K temperature limit, under the assumption of no electronic or
magnetic fields.

Bres 818.1 G†

Brot 2π × 10 267.539 MHz [66]
d 3.07 debye [96]
cS 2π × 20 532.001 MHz
μ� 1.77 debye
c0 2π × 20 532.020 MHz†
c� 2π × 19 kHz†
μ� 3626.87 debye†
μ�μ�/(4πε0|1.5 µm|3) 2π × 287 kHz
Lifetime of |⇑〉 3.4 × 10−4 s‡
Lifetime of |⇓〉 5.2 × 10−4 s‡

relative 10−4 accuracy. We have calculated that, around the
value Bres, changing B by 0.1 G changes c� by 2π × 96 kHz.
This means that 10−4 accuracy suffices to keep c� no larger
than ≈2π × 100 kHz.

Assuming particle distances of |Rk| = 1.5 µm, the resulting
coupling coefficients Ck are given by

Ck = μ�μ�
4πε0|Rk|3

(
1 − 3 cos θ2

k

)
= 2π × 287 kHz

(
1 − 3 cos θ2

k

)
. (30)

The Rydberg state radiative lifetimes (determined numeri-
cally, in the zero-field limit) are of order ≈10−4 s. Compared
with the inverse of these lifetimes, the interactions are rea-
sonably strong, confirming that meaningful spin-exchange
dynamics can be observed within the maximum simulation
time.

In Table I the physical properties of the system are listed,
as well as the resulting parameters that appear in the effective
spin Hamiltonian. We use these parameters in the example
dynamical simulations in later sections.

III. RING GEOMETRY

In principle, the effective interactions Ck can be freely
altered by using optical tweezers to place the molecules at
different distances Rk and angles θk relative to the atom. Ad-
ditionally, the setup offers a way to modify interactions for all
molecules simultaneously, without having to move them. We
recall that the quantization axis �e0 is dictated by the external
(electric or magnetic) field, i.e., the pseudospin states ⇑,⇓
(↑,↓) are defined as states with specific values of mj (MF ) in
reference to the field axis. Therefore, changing the angle of the
field in the laboratory frame (before initializing particles into
the pseudospin states) is seen, in the frame of each particle,
as rotating the entire system while keeping the direction of �e0

unchanged. This results in changing the polar angles θk for all
the molecules simultaneously.

FIG. 3. Schematic depiction of an Nbath = 6 ring-shaped system
at different ring tilt angles β. The numbering of molecules from 1
to Nbath is shown. The Z axis is defined as parallel to the external
electric or magnetic field (and to the quantization axis �e0), while the
X,Y axes are defined arbitrarily. The ring can therefore be effectively
tilted either by repositioning the molecules, or by changing the angle
of the field. The molecule positions are defined by Eq. (31).

To study the possibilities offered by this technique, in this
and following chapters we focus on one particular particle
layout: molecules arranged in a ring shape, with the atom
at the center. This arrangement allows us to tune the system
between a homogeneous case, where all the couplings Ck are
equal, and an inhomogeneous case with unequal Ck , with the
degree of inhomogeneity being tunable.

The molecules are arranged evenly on the circumference of
a ring with radius r0, which we set to 1.5 µm. We define the
coordinates X,Y, Z so that Z points along the external field,
and X,Y are chosen arbitrarily. The position of molecule k =
1, . . . , Nbath relative to the atom, �Rk = (Xk,Yk, Zk ), is defined
as

Xk = r0 cos

(
2π (k − 1)

Nbath

)
cos (β ),

Yk = −r0 sin

(
2π (k − 1)

Nbath

)
,

Zk = r0 cos

(
2π (k − 1)

Nbath

)
sin (β ). (31)

The parameter β describes the tilt angle between the ring
plane and the X -Y plane, or, equivalently, the angle between
the external field and the normal of the ring. Therefore, β can
be changed simply by rotating the external field. The arrange-
ment of particles at different β is schematically depicted in
Fig. 3. When β = 0π , the ring lies in the X -Y plane [see
Fig. 3(a)], and for increasing β, it is tilted counterclockwise
around the Y axis, until it fully lies in the Y -Z plane for
β = π/2 [see Figs. 3(b) and 3(c)]. The resulting polar angles
θk , relative to the axis �e0 ≡ �eZ , can be calculated as

θk = arccos
Zk

r0
= arccos

[
cos

(
2π (k − 1)

N

)
sin (β )

]
.

(32)

Note that the number of molecules on the ring is restricted
by realistic limitations on positioning optical tweezers. As-
suming that two molecules can be placed no closer than
≈700 nm apart, a ring with a radius of 1.5 µm can
accommodate up to about 13 molecules. Increasing the ring
radius can accommodate more molecules, but at the cost of
weakening the atom-molecule interactions.
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FIG. 4. Values of the effective spin-spin interaction coefficients
Ck for molecules k = 1, . . . , Nbath which are distributed on a ring
with varying tilt angle β. We show examples for Nbath = 8 and
Nbath = 12. The values of Ck are calculated from Eq. (30), as a func-
tion of polar angles θk given by Eq. (32). The lines connecting the
points are only to guide the eye. The horizontal dashed line indicates
the Ck = 0 point. Ck is given both in units of the interaction strength
μ�μ�/(4πε0|Rk |3) (left axis), and in units of 2π × kHz (right axis).

The angle β affects the degree of inhomogeneity of the
interactions. Figure 4 shows how the obtained effective spin-
spin couplings C1,C2, . . . ,CNbath vary with β, assuming that
the couplings are given by Eq. (30) as in our example system.
In the figure, Ck is given in two different units: in generic
units of the interaction strength μ�μ�/(4πε0|Rk|3), and in
kHz [assuming that μ�μ�/(4πε0|Rk|3) = 2π × 287 kHz as
listed in Table I]. At β = 0, all θk are equal and therefore all
Ck are identical. As β increases, different spins lie at different
θk , and the Ck become increasingly inhomogeneous.

It is worth noting that, for any β, there exist groups of
molecules which share the same value of cos2 θk , and thus
represent bath spins with identical values of Ck . For example,
for Nbath = 8, the molecules numbered 1 and 5 (on opposite
sides of the ring) share the same value of Ck ; the same is true
for the two molecules 3, 7, and for the four molecules 2, 4, 6,
8. Such groups appear for both even and odd Nbath, if particle
positions are given by Eq. (31). However, if the ring is rotated
around its central axis by some arbitrary angle [corresponding
to replacing 2π (k − 1) with 2π (k − 1) + const. in Eq. (31)],
this property remains only for even Nbath.

The properties of the central spin system can significantly
vary, depending on how inhomogeneous the interactions are.
In the next section we show concrete examples of how mod-
ifying the inhomogeneity via the parameter β changes the
dynamical properties of the system.

IV. EXAMPLE DYNAMICS

In this section, we present numerical simulations of the
time evolution of the described ring system. We focus on
scenarios that demonstrate how tuning the parameter β allows
us to smoothly tune the simulated system parameters.

We consider two scenarios. In the first scenario, the central
spin corresponds to a qubit interacting with a disordered envi-
ronment, and we examine the 〈Ŝ(0)

z (t )〉 dynamics. Modifying
β is equivalent to changing the disorder level of the simulated
environment. In the second scenario, all the spins represent a
network of qubits, with one central node and Nbath edge nodes
(bath spins). We show that a classical bit can be communicated
between two edge nodes that have the same value of Ck . The
time of the communication process depends on β.

Unless stated otherwise, throughout this section we use
the system Hamiltonian in Eq. (10), the values of Ck from
Eq. (30), the angles θk from Eq. (32), and the physical pa-
rameters cS, c0, c� listed in Table I.

A. Central spin decoherence

The case of a qubit (central spin) coupled to a disordered
environment (spin bath) is a common scenario in which in-
homogeneity of Ck can have significant impact on system
properties. The qubit starts in a pure quantum state, but over
time, interactions generate quantum correlations between the
qubit and environment, leading to qubit decoherence. The
decoherence process manifests as a decay of the norm of the

central spin vector, ||〈 �̂S(0)〉|| ≡ (〈Ŝ(0)
+ 〉〈Ŝ(0)

− 〉 + 〈Ŝ(0)
z 〉2)1/2; this

can be seen directly by analyzing the reduced density matrix
of the central spin [2,16]. For this reason, dynamics of the
central spin are of interest from a quantum information point
of view. In a particularly simple case, the initial state has a
single, well-defined value of total spin z projection (〈σ̂z〉) and
so 〈Ŝ(0)

± 〉(t ) = 0 at all times. Then the decoherence is fully
captured by the decay of 〈Ŝ(0)

z 〉. In further discussion, we focus
on this kind of initial states.

A commonly considered example of such a scenario is that
of an electron qubit in a semiconductor quantum dot, which
interacts with neighboring nuclear spins through a hyperfine
contact interaction. In that case, the interaction strengths for
different nuclei are inhomogeneous because of the spatial
variation of the electron wave function. The hyperfine inter-
actions are realistically modeled by isotropic XXX couplings,

of the form �̂S(0) · �̂S(k) = Ŝ(0)
z Ŝ(k)

z + 1
2 (Ŝ(0)

+ Ŝ(k)
− + H.c.). For this

reason, spin dynamics in such systems have been primarily
studied in the XXX central spin model [1,2,4,98–102]. These
studies reveal that central spin dynamics are significantly
different, depending on whether the interactions are homo-
geneous. For a homogeneously interacting XXX system (and
vanishing Zeeman fields cS, c0 = 0), the dynamics are exactly
periodic [99]. The central spin z initially decays on short
timescales but then returns to the initial state and oscillates

052618-9



JACEK DOBRZYNIECKI AND MICHAŁ TOMZA PHYSICAL REVIEW A 108, 052618 (2023)

in this way indefinitely. Therefore, the initial pure state is
never lost permanently, and the system features no long-term
decoherence. For inhomogeneous couplings, the behavior is
different. Initially, the central spin z oscillates periodically,
but over time the oscillation envelope decays. Eventually, the
central spin settles at a diminished value [2]. This long-time
spin value depends on the initial bath polarization; in partic-
ular, for a bath with initial zero total polarization, the central
spin decays nearly completely to zero. The timescale of this
decay also varies, depending on the initial bath state, and on
the central-bath coupling coefficients. Usually, it is inversely
proportional to the spread (difference between maximal and
minimal values) of the coupling coefficients [1,4,100,101].

Our setup simulates a different scenario where environ-
mental couplings are solely of the XX kind, and to our
knowledge, the decay dynamics in this model have not yet
been studied in detail. Nevertheless, the dynamics of the XX
and XXX models are qualitatively similar in the most impor-
tant aspects (though they are not identical), and in particular
the XX model displays similar decoherence dynamics. Since
the ring tilt parameter β allows us to smoothly set the in-
homogeneity of Ck (i.e., the disorder level of the simulated
environment), it means our setup can be used directly to
explore this decoherence in XX systems in homogeneous vs
inhomogeneous coupling cases.

We set the system size to Nbath = 12, and take the initial
state

|�0〉 =
∑
{| j〉}

α j |⇓〉 ⊗ | j〉. (33)

The sum includes all the possible bath configurations | j〉 ≡
|S(1), . . . , S(Nbath )〉 that have six bath spins pointing up and six
bath spins pointing down. The coefficients α j have magni-
tudes and phases drawn independently from a uniform random
distribution and are normalized to

∑ |α j |2 = 1. This initial
state represents a polarized qubit in a bath with zero overall
polarization.

The evolution of 〈Ŝ(0)
z 〉(t ) is shown in Fig. 5 at several

different values of β. When β = 0 (first row), all couplings
are identical. Unlike the XXX model, the XX model dynamics
in this case are not periodic but 〈Ŝ(0)

z 〉(t ) still displays high-
amplitude oscillations with no significant long-time decay,
repeatedly returning close to its initial value. From the deco-
herence point of view, although the qubit becomes entangled
with the environment, it keeps returning to an almost-pure
state.

For β > 0, the dynamics are different. At short times, the
spin oscillates identically with the β = 0 limit, but now the
envelope of this oscillation decays over time. Eventually, the
central spin settles around a near-zero value with only small-
amplitude oscillations. This behavior represents irreversible
decoherence, i.e., the qubit does not return to a pure state
on reasonable timescales. The time needed for the oscillation
envelope to decay to its final value, which we designate τ , is
dependent on β: as β increases and the interactions become
more inhomogeneous, the decay becomes faster. In these as-
pects the dynamics are qualitatively highly similar to the XXX
model.

We can attempt to more precisely describe the relationship
between β and τ . To our knowledge, the decay timescale
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FIG. 5. Time evolution of the central spin z projection 〈Ŝ(0)
z 〉(t )

for different values of β, for an example Nbath = 12 system with the
initial state given by Eq. (33). At β = 0, all couplings are homo-
geneous and the central spin does not exhibit significant long-time
decay but displays large-amplitude oscillations. For larger β, the
initial oscillations decay after a certain time, stabilizing as small
oscillations around a diminished value. The vertical dashed lines
indicate the predicted decay timescales τ = 1/A at given β > 0
[Eq. (34)].

for the XX model has not been analytically derived yet.
Therefore, we estimate it by assuming that, like in the XXX
model, it is inversely proportional to the spread of couplings
A = max(|Ck|) − min(|Ck|):

τ = 1/A. (34)

Note that τ → ∞ for fully homogeneous couplings, which
agrees with the observation that no long-time decay occurs
for β = 0.

To check the accuracy of this estimate, in Fig. 5 we have
indicated the calculated values of τ at given β with a green
dashed line. Interestingly, despite the crudity of the estima-
tion, the figure shows that Eq. (34) provides a remarkably
close approximation of the decay time.

To directly show the relationship between τ and β, in
Fig. 6 we show the spread A as a function of β for the
example Nbath = 12 system in Fig. 6(a), and the corresponding
timescale τ = 1/A in Fig. 6(b). For most values of β, A(β )
increases monotonically [and τ (β ) consequently decreases],
except for the region 0.2π < β < 0.3π where there are sev-
eral kinks in both plots. They appear because A is defined
as the difference between the absolute values |Ck|, which
are not necessarily smooth functions of β. Overall, however,
regulating β allows us to smoothly tune the value of τ across
several orders of magnitude.

Finally, we briefly describe additional simulations (not
shown) which we have done to check the results of adjusting
different system parameters.
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FIG. 6. (a) The spread of couplings A = max(|Ck |) − min(|Ck |),
as a function of the tilt angle β, for the example 39K – 40Ca 19F system
with Nbath = 12. Several kinks are visible in the vicinity of β ≈ 0.2π

and β ≈ 0.3π ; see text for explanation. Similarly as in Fig. 4, A is
given both in units of μ01μ�/(4πε0|Rk |3) and in units of 2π × kHz.
(b) The resulting predicted timescale for the central spin decay, τ =
1/A, in units of seconds.

First, we have investigated the results of adjusting the pa-
rameter c�, which represents an effective Zeeman field acting
on the central spin, and is controllable via external fields. So
far throughout this section, we have considered a system with
a Zeeman field strength c� = 2π × 19 kHz, which is small
compared with the interaction energies. We have additionally
checked the dynamics for the same system but with c� set
to zero, and found that the dynamics are almost unchanged,
confirming that such small c� has a negligible effect on the
dynamics. On the other hand, if c� becomes large compared
with interaction strengths, it might have a significant effect.
We have therefore checked the central spin dynamics for
Nbath = 12 and β = 0.10π , with all system parameters set
as previously, but with an artificially increased mismatch c�

to represent off-resonance between the qubit and the envi-
ronment. As c� becomes large in comparison to interaction
strengths, we find that spin exchange between the central
and bath spins becomes suppressed because of its increasing
energy cost, and only a small part of the central spin decays at
long times. This behavior is similar to XXX model dynamics,
where a large Zeeman field results in only a small part of the
initial spin decaying [4].

Second, we have checked the dynamics for different bath
polarizations, i.e., when setting initial states similar to Eq. (33)
but with a smaller number of up-pointing spins in the bath.
We find that, for increasing polarization, a smaller part of
the initial spin decays, which is again similar to the XXX

model results [2]. Furthermore, we find that at increasing bath
polarization, the decay timescale in our model increases so
that τ is no longer a good estimate.

Third, we have compared XXX and XX dynamics
for the unpolarized bath initial state [Eq. (33)] in order
to confirm that they are indeed similar. Specifically, we
have compared dynamics for two Hamiltonians: one with
XX couplings, c�Ŝ(0)

z + ∑
k |Ck|(Ŝ(0)

+ Ŝ− + H.c.), and one
with XXX couplings, c�Ŝ(0)

z + ∑
k |Ck|(Ŝ(0)

+ Ŝ− + Ŝ(0)
− Ŝ+ +

2Ŝ(0)
z Ŝ(k)

z ). For the purposes of this comparison, we explicitly
set all Ck to be real and positive, the same way they are in
the previously cited XXX model papers (note that phases
of Ck in our setup can be modified; see Appendix B). Our
simulations show that the dynamics of 〈Ŝ(0)

z 〉(t ) remain quanti-
tatively similar between both models, with approximately the
same decay timescale and long-time average of 〈Ŝ(0)

z 〉(t ). This
suggests that our setup can be used to approximately study
XXX dynamics in certain specific cases. However, this only
applies to the case with unpolarized bath and small c�. When
simulations are run with higher bath polarizations or stronger
Zeeman fields c�, we find the XX and XXX model dynamics
deviate from each other.

B. Quantum network simulation

The central spin Hamiltonian can also describe a star-
shaped quantum network, with several edge qubits coupled
to a single central qubit. In this case, instead of regarding
the bath spins as a collective environment, we are interested
in the individual time evolution of each bath spin. (Although
the designation “bath spins” is no longer fully appropriate in
this case, for consistency we will keep using it throughout this
section.) By adjusting the physical parameter β, the couplings
within the network can be changed.

One example of a quantum network application, where the
inhomogeneity of interactions directly affects the outcome,
is the protocol of generating entangled states described in
Ref. [103]. In this procedure, a star-shaped quantum net-
work with homogeneous XX couplings is initialized in a
state |⇑; ↓(1), . . . ,↓(Nbath )〉, then measurements of the central
spin state are performed at specific evolution times. If the
measurement outcome is ⇓, the bath spins are in a state
∝ ∑

k Ck|↓ . . . ↑(k) . . . ↓〉. In the homogeneous case (corre-
sponding to β = 0), the obtained bath state is a W state
where each edge spin has equal probability of pointing up.
For inhomogeneous Ck , generalized W-like states are instead
obtained. The protocol can be directly realized in our setup,
and β then serves as a control parameter for modifying the
form of entanglements created within the network.

Another interesting application of quantum networks is
so-called quantum state transfer, i.e., transmitting an arbi-
trary quantum state from one part of the network to another.
Typically, an input bath qubit is initialized in some desired
pure quantum state, while the rest of the system is in some
neutral state. Then the system is allowed to evolve, and, after
some (predictable) optimal transfer time τtransf , this quantum
state is transferred with a high fidelity to an output bath spin.
Quantum state transfer has been studied for quantum networks
of different shapes [104,105], including spin stars with XX
couplings [34–36,106,107].
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In principle, it is possible to simulate such a transfer proto-
col with our setup, but in this case we run into an experimental
limitation. In typical transfer protocols, it is assumed that
effective Zeeman fields acting on the spins are no stronger
than the interactions. On the other hand, in our setup c0, cS are
locked to values much larger than the interaction. This fact, as
noted in Sec. II D, makes it experimentally difficult to realize
a transfer protocol that faithfully preserves the phase between
the input state components. This is a limitation, since the
accurate transfer of an arbitrary qubit state requires preserving
both the magnitude and phase of its components.

In light of this limitation, we shift our focus to a simpler
task of transmitting a classical bit (i.e., the input spin is either
in state |↑〉 or |↓〉), rather than a full qubit state. In that case,
the limitation mentioned above does not pose a problem, as
there is no phase information to transmit. Note that the idea
of transmitting classical information through a spin network
has been considered before [108]. The protocol we will now
describe allows us to transmit a single bit between two edge
spins which share identical values of Ck; this makes the ring
system especially well-suited for its study, since pairs of such
edge spins arise naturally in the ring geometry. While less ex-
citing from a quantum information standpoint, this procedure
might be a foundation for a usable qubit state transfer protocol
if the fields c0, cS could be controlled.

We present qualitative numerical results to demonstrate the
feasibility and properties of this specific protocol. Our focus
here is on presenting the basic properties of this scenario, and
the impact of β on system properties, therefore we have not
attempted detailed theoretical analysis, and we do not attempt
to exactly quantify the efficiency of the transfer.

We begin by selecting two bath spins as the input and the
output spin, with the condition that their values of Ck are iden-
tical (Cin = Cout). For the following demonstration, we take an
Nbath = 8 system, and set spins 3 and 7 as input and output,
respectively. In this case, the condition C3 = C7 is fulfilled at
any β. Additionally, note that C3, C7 are both independent of
β (see Fig. 4 in Sec. III). This simplifies matters, because it
guarantees that these interactions will not become zero at any
value of β. The system is prepared in an initial state of the
form |S(0); S(in),↓, . . . ,↓〉, where the central spin state S(0) is
⇑ or ⇓, the input spin state S(in) is ↑ or ↓, and all other bath
spins (including the output) are in state ↓.

In Fig. 7 we present the dynamics of the output spin
〈Ŝ(out)

z 〉(t ) in an example system with β = 0.12π . This evo-
lution is shown for each of the four possible initial states of
the input and central spin (as indicated by row and column
labels).

For the initial states |⇓↓(in)〉,|⇓↑(in)〉,|⇑↓(in)〉, the value
of 〈Ŝ(out)

z 〉 remains almost unchanged from its initial value,
remaining close to −1/2 at all times. However, for the ini-
tial state with |⇑↑(in)〉, the dynamics of 〈Ŝ(out)

z 〉 are visibly
different. 〈Ŝ(out)

z 〉 oscillates between −1/2 and a value very
close to ≈ + 1/2. We can define a time τtransf as the time
where 〈Ŝ(out)

z 〉 first reaches the maximum point of the large
oscillation. The envelope of this large oscillation is modulated
by rapid small-amplitude oscillations.

This result can be summarized as follows. If the central
spin is initially set to ⇑, then within the time τtransf the initial
state of the input spin will be transmitted to the output spin,

FIG. 7. Time evolution of the z component of the output
bath spin 〈Ŝ(out)

z 〉 in an Nbath = 8 system. The initial state is
|S(0)S(in)↓2 . . . ↓8〉, with S(0) = ⇑ or ⇓, S(in) = ↑ or ↓. Here the input
and output spins are chosen as S(in) = S(3) and S(out) = S(7). The
system is arranged in a ring geometry with angle β = 0.12π , so that
C3 = C7 �= other Ck . The different plots correspond to different initial
states of S(in) and S(0), as indicated by the row and column labels.
For the initial state with |⇑↑(in)〉 (bottom right), the output spin z
gradually evolves from −1/2 to +1/2, reaching a maximum in a
time τtransf ≈ 2 × 10−5 s. For all other initial states, the output spin z
remains close to −1/2 at all times. Effectively, if the initial central
spin state is ⇑ (right column), the initial state of the input spin is
transmitted within time τtransf to the output spin.

i.e., a measurement of 〈Ŝ(out)
z 〉(t ) will, with near-unity prob-

ability, yield a result identical to the initial input spin value.
This is equivalent to a communication protocol, where the
initial state of the input spin (a single classical bit) can be
picked up by measuring the output spin at τtransf . On the other
hand, if the central spin is set to ⇓, then no transfer occurs,
and 〈Ŝ(out)

z 〉(t ) remains near −1/2. In addition to transmitting
a bit, the procedure can be also interpreted as implementing a
classical AND operation: if the up-spin (down-spin) states are
mapped to 1 and 0, respectively, then 〈Ŝ(out)〉(τtransf ) is approx-
imately equal to the result of performing the AND operation on
the initial choices for S(0), S(in).

The transfer period τtransf can be regulated via the parame-
ter β. Figure 8 shows the dynamics of 〈Ŝ(out)

z 〉(t ) for the initial
state |⇑↑(in)〉, for increasing values of β. The dashed green
lines indicate τtransf , defined as the time where 〈Ŝ(out)

z 〉(t ) first
reaches its maximum value. For β > 0, we additionally show
the evolution of 〈Ŝ(5)

z 〉(t ), to represent bath spins which have a
different value of Ck than Cin.

There are two key observations to be made from the figure.
First, for β = 0 the transfer never occurs (τtransf → ∞). In this
limit, all bath spins other than 〈Ŝ(in)

z 〉 show identical evolution.
As β increases, the timescale τtransf becomes shorter. Recall-
ing that, in this example case, the couplings for the input and
output spins C3 = C7 are independent of β, we conclude the
change in τtransf comes from the change in values of all other

052618-12



QUANTUM SIMULATION OF THE CENTRAL SPIN MODEL … PHYSICAL REVIEW A 108, 052618 (2023)

FIG. 8. Time evolution of the bath spin 〈Ŝ(out)
z 〉(t ) ≡ 〈Ŝ(7)

z 〉(t ) for
an initial state |⇑↑1↓2 . . . ↓N 〉, with same system parameters as in
Fig. 7, but with changing β. The transfer period τtransf , defined as the
time where 〈Ŝ(out)

z 〉(t ) first reaches its maximum value, is marked for
β > 0 with a dashed line. Additionally, for β > 0, the evolution of
spin 〈Ŝ(5)

z 〉 is shown. As β becomes larger (the differences between
C3 = C7 and other Ck become larger), the period of the transmission
from spin 3 to 7 becomes smaller. Regardless of β, the transmission
does not occur for other bath spins (such as spin 5) that have Ck

different from C3 = C7, as can be seen from evolution of 〈Ŝ(5)
z 〉.

Ck . This indicates that the decrease of τtransf is caused by a
growing overall difference between Cin = Cout and the other
couplings, although we have not attempted to determine an
exact form of this relationship.

Second, for bath spins with Ck �= Cin, 〈Ŝ(k)
z 〉 never rises far

from the initial value −1/2. This confirms that the communi-
cation occurs only to the output spin which has the same Ck

value as the input spin.
Finally, we mention the effects of changing the parameter

c� while leaving all other Hamiltonian parameters unchanged.
We have performed additional numerical simulations, and
found that the transmission dynamics in the initial state
|⇑↑(in)〉 are robust to increasing c�. Even at high c� ≈ 10Cin,
the dynamics of 〈Ŝout

z 〉 remain similar, with an oscillation be-
tween −1/2 and +1/2, although the timescale τtransf becomes
longer.

V. EXPERIMENTAL FEASIBILITY

A. Optical tweezer traps

Let us now analyze the experimental feasibility of realizing
the presented setup. One of the most important requirements
is the ability to precisely position the particles in space. The
uncertainty of the particle positions should be much smaller
than the interparticle distances, to avoid significant overlap
between particle wave functions and to only consider long-
range dipolar interactions.

Such tight trapping of molecules is experimentally fea-
sible, as indicated by existing experiments with molecules
and atoms trapped in optical tweezers. For example, in the
experiment described in Ref. [93], CaF molecules were held
in tweezer traps with effective harmonic trapping radial (axial)
frequencies of ω/(2π ) = 187.7 kHz (42.2 kHz). For a particle
of 40Ca 19F mass m = 59 u, this corresponds to radial (axial)
position uncertainties

√
h̄/mω of 0.03 µm (0.06 µm). As an

example of similarly strong atom trapping, the experiment in
Ref. [109] featured 85Rb and 87Rb atoms trapped in tweez-
ers with effective radial (axial) trap frequencies ω/(2π ) =
165 kHz (27 kHz), corresponding to radial (axial) atom po-
sition uncertainties of about 0.03 µm (0.07 µm).

Note that, if harmonic trapping frequencies on the or-
der of 2π × 104 Hz are used in our setup, the resulting
trap excitation energies are small in comparison with the
example atom-molecule interaction strength on the order of
2π × 105 Hz. As a result, the dipolar interactions can cause
excitations of higher trap states [110]. If interparticle distances
are small in comparison with the extent of the particle wave
functions, then the trap excitations can in turn significantly
affect the interaction strength, and cannot be kept out of the
analysis. However, the distances assumed in our setup are
large enough to avoid this effect. To verify this, we have
performed simplified numerical calculations to analyze the
effect of trap excitations on the atom-molecule interaction in
our system. We assumed the atom and molecule are separated
by 1.5 µm and placed in one-dimensional (1D) traps that
have infinite radial frequency and a finite axial frequency ω =
2π × 50 kHz. The obtained results indicate that the dipole-
dipole interaction strength remains almost unchanged, even
when particles are excited to the first few excited trap states.
This justifies neglecting trap effects in our analysis.

Optical lattices can be used as an alternative to optical
tweezer trapping. They are suitable for arranging particles in
regular configurations, as long as particle hopping between
sites is suppressed. While they do not allow positioning par-
ticles with as much flexibility as optical tweezers, lattices
can be created in various shapes, such as hexagonal [111] or
ring-shaped two-dimensional (2D) structures [112].

B. Rydberg atom trapping

The necessity to trap the Rydberg atom in a fixed posi-
tion adds complexity to the setup. Ground-state atoms are
typically trapped in red-detuned optical traps, which however
become antitrapping for atoms excited to Rydberg states. In
most experiments, this issue is addressed by switching off the
traps prior to the Rydberg excitation, but this limits the max-
imum experiment time because of atom expansion. However,
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recently various methods have been explored to keep an atom
trapped even after Rydberg excitation. Examples include bot-
tle potentials made up of combinations of light beams [113],
optical lattice potentials which are rapidly inverted simulta-
neously with the atom’s excitation [114], trapping a Rydberg
alkaline-earth atom by exploiting its nonexcited ionic core
[115], or state-insensitive, magic wavelength optical lattices
that can trap ground and Rydberg states equally [116–119].
The trapping of Rydberg atoms, therefore, appears to be a
manageable challenge.

C. Time limits imposed by molecular state coherence

The primary limitation to experiment time is the radiative
lifetime of Rydberg states (on the order of 10−4 s). Coherence
times of molecular states, which are finite in real experiments,
in theory can also limit the experiment time. However, in
practice they can be made much longer than Rydberg state
lifetimes. For example, for a single tweezer-trapped CaF
molecule in a combination of N = 0/N = 1 states, rotational
state coherence times can be on the order of ≈100 ms [92].
Additionally, coherence between hyperfine states within the
same rotational level can last even longer. As an example, for
individual nuclear hyperfine N = 0 states of RbCs, coherence
times can exceed ≈1 s [120]. We conclude that molecular state
coherence times should not pose a significant limitation.

VI. CONCLUSION

In summary, this paper proposes a design for an ultracold
particle system which can act as a quantum simulator for a
central spin model. The system consists of a single Rydberg
atom acting as the central spin, and polar molecules acting as
the bath spins. By making use of electric dipole-dipole inter-
actions between the atom and molecules, effective spin-spin
exchange interactions are obtained. Due to the large transition
dipole moments of Rydberg atoms and negligible molecular
permanent dipole moments, the resulting central spin model
features strong central-bath XX interactions, and no bath-bath
interactions.

The system can be realized, e.g., by using optical tweezers
to precisely position the particles, which allows us to con-
trol the coupling parameter for each bath spin separately. In
particular, arranging the molecules in a ring shape allows us
to smoothly tune the system between fully homogeneous and
increasingly inhomogeneous interactions simply by changing
the angle of an external field that defines the quantization axis.
To illustrate this capability, we show example scenarios where
dynamics depend directly on this angle parameter. In the
first scenario, we consider a simulated decoherence process
of a qubit interacting with an environment, where the angle
parameter controls the decoherence timescale. In the second
scenario, we demonstrate a simple communication protocol,
in which a classical bit is sent between two bath spins that
share the same strength of interaction with the central spin.
Here the angle parameter controls the resulting transfer time.

The setup should be feasible to realize in present ultracold
physics laboratories. Although for the ring-shaped tweezer
layout the maximum possible molecule number is limited,
other types of particle geometries, e.g., spherical three-

dimensional layouts, could allow for much larger molecule
numbers. The setup may therefore be useful for simulating
systems with number of bath spins high enough to be imprac-
tical for exact numerical simulation.

The proposed setup admits several potential directions for
further exploration and improvement. For example, using
Rydberg atoms as bath spins in place of molecules would
change the Hamiltonian significantly, possibly allowing to
reach different parameter regimes, e.g. with non-negligible
bath-bath interactions. Other interesting possibilities include
systems where more than one atom is trapped in a single
optical tweezer (see, e.g., Refs. [86,121,122]), corresponding
to models with more than one central spin.

Using alternative molecule or atom species might also
help extend the capabilities of the simulator. For example,
molecules with particularly strong internuclear dipole mo-
ments (such as certain dimers containing silver or copper
atoms [123]) might allow us to realize non-negligible bath-
bath interactions, especially if the intermolecular distances
are made as small as possible. Similarly, using molecules
with large dipole moments d and small rotational constants
Brot (which maximizes the permanent dipole moment induced
by an electric field) might allow realizing nontrivial effec-
tive Ŝ(0)

z Ŝ(k)
z interactions, opening the way to simulating XXZ

models beyond the XX model.
A technique not explored here is using external microwave

ac radiation to dress molecular states, which allows us to
obtain dressed pseudospin states of desired composition. Such
an approach is taken in many works describing simulated
spin systems realized with ultracold molecules [43,46,47,50–
52] and may be applicable to this hybrid atom–molecule sys-
tem as well. However, the microwave radiation would affect
both the molecules and the atom, leading to potential com-
plications. Nevertheless, if successfully implemented, this
technique might enable even greater control over the system.
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APPENDIX A: ATOMIC AND MOLECULAR LEVELS

In this section, we describe in more detail the methods used
to obtain the single-particle eigenspectra of the molecular
Hamiltonians ĥ(k)

mol and the Rydberg atom Hamiltonian ĥRyd.
Additionally, we discuss the extent to which external fields
can be employed to adjust the individual level energies and
interlevel transition frequencies.

As a concrete example, in Fig. 9, we depict in detail
the energy spectrum of atom 39K [Fig. 9(a)] and molecule
40Ca 19F [Fig. 9(b)] as a function of the magnetic field. The
figure illustrates the example setup described in Sec. II E, in
which specific levels of 39K and 40Ca 19F, at a high magnetic
field, are chosen to represent the central spin states ⇑,⇓ and
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FIG. 9. The atomic and molecular energy spectrum as a function of magnetic field B. We use the same atomic species 39K and molecular
species 40Ca 19F as in the example setup described in Sec. II E 2. (a) The n = 52, l = 2 levels and the n = 53, l = 1 levels of 39K. The blue
dashed lines indicate the two levels which, in Sec. II E 2, are chosen to represent central spin states |⇑〉 and |⇓〉. The energy difference between
them, at a particular magnetic field B = 818.1 Gauss, is indicated by c0. Energies are calculated with the PAIRINTERACTION Python package and
are given relative to the ionization threshold. (b) The hyperfine-split N = 0 and N = 1 levels of the 40Ca 19F molecule. Insets show in greater
detail the spectrum at smaller magnetic fields. The green dashed lines indicate the two levels which, in Sec. II E 2, are chosen to represent bath
spin states |↑〉 and |↓〉. We also show the values of the N , MN , Ms, MI quantum numbers which characterize these pseudospin levels at higher
magnetic fields. The energy difference between these levels, at a particular magnetic field B = 818.1 Gauss, is indicated by cS . Energies are
calculated by direct numerical diagonalization of Eq. (A1) using the parameters from Table II. The magnetic field is chosen so that c0 and cS

are almost equal, allowing for resonant energy exchange between atoms and molecules.

the bath spin states ↑,↓ respectively. In Fig. 9, we indicate
these pseudospin states with thicker lines.

1. The CaF hyperfine Hamiltonian

In this section, we examine in detail the internal molecular
Hamiltonian ĥ(k)

mol, showing how it can be numerically diago-
nalized to find the molecular levels for any strength of external
fields.

We focus on an example molecule species 40Ca 19F, a polar
rigid-rotor molecule, in its ground vibrational and electronic
2� state. In the 2� state, the molecule angular momentum
comes from three sources: the rotational angular momentum
N = 0, 1, 2, . . ., the spin of the unpaired electron s = 1/2, and
the spin of the 19F nucleus I = 1/2 (the 40Ca nucleus has zero
spin). Using these angular momenta, we can define an uncou-
pled basis of states |N, MN , s, Ms, I, MI〉, where MN , Ms, MI

are the projections of the corresponding angular momenta on
the space-fixed quantization axis. This is a convenient basis

for diagonalizing the molecular Hamiltonian. Note that chang-
ing the values of s and I requires energy scales far beyond
those considered in our model, therefore we treat them as fixed
values, and write the uncoupled basis states more concisely as
|N, MN , Ms, MI〉.

The internal Hamiltonian for a single molecule can be
written as

ĥmol = ĥrot + ĥhf + ĥE;mol + ĥB;mol, (A1)

where the rotational and hyperfine terms ĥrot + ĥhf describe
the zero-field levels, while ĥE;mol + ĥB;mol describe external
field interactions further dressing the eigenstates. Each term is
described below in more detail. The values of all the physical
parameters mentioned below are listed in Table II.

The first term, ĥrot, describes the rotational energy. For a
rigid-rotor molecule, it is given by

ĥrot = BrotN̂
2, (A2)

with Brot being the rotational constant of the molecule.
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TABLE II. Physical parameters of the 40Ca 19F molecular Hamil-
tonian used for numerical calculations in this paper.

I 1/2 [60]
s 1/2
Brot 2π × 10267.539 MHz [66]
d 3.07 debye [96]
γ 2π × 39.498 MHz [125]
b 2π × 108.476 MHz [125]
c 2π × 40.647 MHz [125]
cF 2π × 0.029 MHz [125]
gs 2.0023
gI 5.2545 [126]
gr −5.13 × 10−5 [127]

The second term, ĥhf , describes the hyperfine couplings
between angular momenta. For 40Ca 19F it takes the form

ĥhf = γ �s · �N + (b + c/3)�s · �I
+ (c/3)

√
6T 2( �C) · T 2(�I, �s) + cF �I · �N, (A3)

where the terms are, in order: the electron-spin–rotation
interaction; the scalar and tensor parts of the nuclear-
spin–electron-spin interaction; and the nuclear-spin–rotation
interaction. The magnitude of the resulting hyperfine split-
tings is controlled by the coupling constants γ , b, c, and cF .
The hyperfine splittings are on the order of ≈2π × 107 Hz,
which is much larger than the dipolar interaction energies
in our system, and so the hyperfine couplings cannot be
neglected. A more detailed overview of the hyperfine cou-
plings in 2� molecules can be found in many sources, e.g.
in Refs. [60,124].

The terms ĥE;mol and ĥB;mol describe the interaction with
external electric and magnetic fields, respectively. For fields
directed along the space-fixed quantization axis �e0, these
terms take simple forms:

ĥE;mol = −Edcd̂0, (A4)

ĥB;mol = B(μBgsM̂s − μN gI M̂I − μBgrM̂N ), (A5)

where gs, gI , gr are the g factors corresponding to the electron
spin, 19F nuclear spin, and rotation, respectively. μB and μN

are the standard Bohr magneton and nuclear magneton. We
neglect the small screening factor [60] that normally modifies
the magnetic field.

To numerically find the energy levels at any B or Edc, first
we express the Hamiltonian in Eq. (A1) as a matrix in the
|N, MN , Ms, MI〉 basis. Including all the possible values of
MN , Ms, MI , there are (2N + 1) × 2 × 2 such basis states for
each N . In our calculation the basis includes all states up to
N = 2. This is necessary to obtain accurate results for N = 0,
N = 1 molecular levels at nonzero electric fields, which cause
couplings to higher N .

We now briefly recall the relations necessary to calculate
the matrix elements for all the molecular Hamiltonian terms
(for brevity, in Eqs. (A6)—(A13) any conserved quantum

numbers are left out of the kets):

N̂2|N, MN 〉 = N (N + 1)|N, MN 〉, (A6)

M̂N |N, MN 〉 = MN |N, MN 〉, (A7)

N̂±|N, MN 〉 =
√

N (N + 1) − MN (MN ± 1)|N, MN ± 1〉,
(A8)

�s · �N = MsMN + 1
2 (s+N− + s−N+). (A9)

Analogous relationships as Eqs. (A6)—(A9) hold for other
angular momenta and their dot products.

One term which requires separate attention is the tensor
part of the nuclear-spin–electron-spin interaction. It involves
a scalar product between two rank-two tensors, which corre-
spond respectively to spherical harmonics and to the product
of angular momenta �I , �s. The corresponding matrix elements
can be found by the following equations:

T 2( �C) · T 2(�I, �s) =
p=+2∑
p=−2

(−1)pT 2
p ( �C)T 2

−p(�I, �s), (A10)

T 2
p ( �C) = C2

p (θ, φ), (A11)

〈N, MN |C j
p(θ, φ)|N ′, M ′

N 〉
= (−1)MN

√
(2N + 1)(2N ′ + 1)

×
(

N j N ′
−MN p M ′

N

)(
N j N ′
0 0 0

)
, (A12)

〈Ms, MI |T 2
p

(�I, �s)|M ′
s, M ′

I〉
= (−1)I−MI +s−Ms−p

√
5I (I + 1)(2I + 1)s(s + 1)(2s + 1)

×
+1∑

p′=−1

[(
1 1 2
p′ p − p′ −p

)(
I 1 I

−MI p′ M ′
I

)

×
(

s 1 s
−Ms p − p′ M ′

s

)]
, (A13)

where the expressions in round brackets are the usual Wigner
3 j symbols. The above expressions for tensor elements can
be found in a number of sources; a convenient summary is
available, e.g., in Appendix A of Ref. [47].

The term ĥE;mol contains the electric dipole operator d̂q,
whose matrix elements can be found by relating it to the
rank-1 spherical harmonics tensor,

d̂q = dC1
q (θ, φ). (A14)

Here d is the molecule’s internuclear dipole moment. Based
on Eqs. (A12), (A14), the d̂q operator selection rules can be
expressed as �N = ±1, �MN = q, �Ms = 0, �MI = 0.

With all the matrix elements known, the Hamiltonian can
be diagonalized using standard numerical methods, e.g. the
LAPACK diagonalization routines. The resulting energy levels,
as a function of the magnetic field, are depicted in Fig. 9(b).

In the low-field limit, the molecular levels are linear com-
binations of different |N, MN , Ms, MI〉 states, and MN , Ms, MI

are not good quantum numbers. Instead, the low-field states
are best described in the coupled representation |N, F, MF 〉;
in this limit the good quantum numbers are N, s, I , the to-
tal angular momentum (sum of the three angular momenta)
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F = 0, 1, 2, . . ., and its quantization-axis projection MF =
−F,−F + 1, . . . ,+F . The low-field levels are split into
groups with different N , separated by energies ≈Brot. Within
each N group, the levels are further grouped into manifolds
corresponding to different F , separated by energies on the
order of hyperfine coupling constants (≈2π × 10 MHz in case
of 40Ca 19F). In Fig. 9(b), it can be seen the low-field N = 0
levels are grouped into two manifolds (they correspond, in or-
der of energy, to F = 0 and F = 1), while the low-field N = 1
levels are grouped into four manifolds (they correspond to
F = 1, F = 0, F = 1, F = 2; note there are two different
manifolds with F = 1). Each manifold contains 2F + 1 levels
with different MF , which in the zero-field limit are degenerate.

At higher magnetic fields, the levels undergo increasing
Zeeman shifts and the degeneracy of energies within each
F manifold is lifted. Because of the unpaired electron spin,
which couples strongly to B, the Zeeman shifts in CaF can
be quite substantial in comparison to hyperfine shifts; for the
depicted magnetic-field strengths, the level energies change
by values of ≈2π × 1 MHz per 1 G. At a high enough
field, where the Zeeman term dominates over the hyperfine
couplings (≈100 G in the case of 40Ca 19F), F ceases to be a
good quantum number. All the high-field levels instead have
well-defined MN , Ms, MI , and are very well approximated
by the uncoupled basis states |N, MN , Ms, MI〉 (MF = MN +
Ms + MI also remains a good quantum number).

The Zeeman shift can be used to adjust the frequency of
an electric dipole transition between two molecular states.
However, the magnitude of the transition frequency shift is
typically much smaller than the Zeeman shifts of the individ-
ual state energies. For example, in 40Ca 19F at low magnetic
fields, the transition frequencies between two N = 0, N = 1
levels are shifted from the zero-field value by less than ≈2π ×
1 MHz per 1 G. This is very small compared with the transi-
tion frequency 2Brot ≈ 2π × 20 GHz. For higher values of B,
where the individual levels are given by |N, MN , Ms, MI〉, the
transition frequencies saturate and become almost insensitive
to further increase of B. This is because the electric dipole
operator d̂q only couples states which have the same values of
Ms and MI , and which therefore exhibit almost identical linear
slopes of Zeeman shifts (except for the very small part propor-
tional to MN ). As an example, in 40Ca 19F, the frequencies of
N = 0 ↔ N = 1 transitions are shifted by only ≈10 MHz at
a magnetic field ≈100 G, and they remain almost unchanged
with a further increase of B.

Electric fields also can shift molecular energies. The Stark
shift of a molecular level in a rigid-rotor molecule is on the
order of ≈(dEdc)2/(2Brot ) and depends significantly on N and
MN [60]. However, for an electric field up to 50 V/cm (the
approximate field-ionization limit of the Rydberg atom at n =
50), these Stark shifts are typically very small in comparison
to the rotational transition frequency. For example, at Edc =
50 V/cm, 40Ca 19F energies are shifted by a few hundred kHz
at most.

2. The K Hamiltonian spectrum

In this section, we examine the spectrum of the internal
atomic Hamiltonian ĥRyd. Unlike the previous section on ĥmol,
we will not delve into the process of diagonalizing ĥRyd in

detail, since we rely on pre-existing libraries such as ARC
and PAIRINTERACTION to obtain the atomic levels and their
energies at various electric or magnetic fields. Instead, we
briefly discuss the efficiency of adjusting atomic energies with
external fields.

As an example, Fig. 9(a) illustrates the atomic level spec-
trum of 39K as a function of the magnetic field. The energies
depicted in the figure were calculated using the PAIRINTERAC-
TION library. Comparing Figs. 9(a) and 9(b), it can be seen the
atomic Zeeman shifts at approx. B = 800 G can be noticeably
larger than molecular shifts. This is due to the diamagnetic
atomic Zeeman term, which is quadratic in B and becomes
significant at higher fields. We also note the atomic Stark
shifts are similarly much stronger than molecular Stark shifts,
because of the much larger electric polarizability of a Rydberg
atom, scaling as ≈n7 [61].

It is also worth noting that the Zeeman shift can change
electric dipole transition frequencies in atoms much more
strongly than in molecules. This is because such transitions
occur between levels with different orbital angular momenta
l , and the orbital angular momentum significantly affects the
magnitude of the atomic Zeeman shift [63]. For example, at
B ≈ 1000 G, the transition frequency between two n = 53,
l = 1 and n = 52, l = 2 states can be changed from the
zero-field value by values on the order of several hundred
≈2π × MHz.

APPENDIX B: MODIFYING THE PHASES
OF INTERACTION COEFFICIENTS

In the spin Hamiltonian Ĥeff [Eq. (10)], the interaction
coefficients Ck [Eq. (13)] can be complex numbers. However,
it is often desirable to have control over their phases. For
example, descriptions of qubit decoherence in quantum dots
typically assume real-valued interactions. In this section, we
describe how to effectively modify the phases of Ck in the
context of time evolution.

Suppose we want to evolve an initial state |�0〉 under a
Hamiltonian having the same form as Ĥeff , but with interac-
tion parameters modified as Ck → Cke−iξk (with some desired
values of ξk). To do so, first define the following unitary
transformation:

F̂ = 1̂(0) ⊗ F̂ (1) ⊗ F̂ (2) ⊗ · · · ⊗ F̂ (Nbath ), (B1)

where

F̂ (k) = eiξk |↑(k)〉〈↑(k)| + |↓(k)〉〈↓(k)|. (B2)

This transformation can be applied to the Hamiltonian to
modify the phases of Ck:

F̂ĤeffF̂† = c0Ŝ(0)
z + cS

Nbath∑
k=1

Ŝ(k)
z

+
Nbath∑
k=1

(Cke−iξk Ŝ(0)
+ Ŝ(k)

− + C∗
k eiξk Ŝ(0)

− Ŝ(k)
+ ). (B3)

Since F̂ is unitary, e−iF̂ĤF̂†t = F̂e−iĤt F̂†. Therefore, for
the time evolution of any initial state |�0〉, the following

052618-17



JACEK DOBRZYNIECKI AND MICHAŁ TOMZA PHYSICAL REVIEW A 108, 052618 (2023)

holds:

e−iF̂Ĥeff F̂†t |�0〉 = F̂e−iĤeff t (F̂†|�0〉). (B4)

Therefore, the evolution of the initial state |�0〉 under the
modified Hamiltonian [Eq. (B3)] can be obtained by setting
a modified initial state F̂†|�0〉, letting it evolve under the
original Hamiltonian Ĥeff , and acting with F̂ on the resulting
evolved state |�(t )〉. On the experimental level, this means
simply adjusting the initial-state preparation and adding an
extra step to the result analysis. Thus, the phases of all Ck

can be regarded as freely controllable parameters. In particular
all the Ck can be changed to be real and positive by setting
ξk = argCk .

It is worth noting that, under certain initial states, the time
evolution of some observables is insensitive to phases of Ck in
the first place. Consider the time evolution of an observable
described by some operator Ô. Under the Hamiltonian Ĥeff ,
the value of O evolves as

O(t ) = 〈�0|eiĤeff t Ôe−iĤeff t |�0〉. (B5)

Now consider its evolution under the Hamiltonian with
modified interaction coefficients [Eq. (B3)]:

O(t ) = 〈�0|eiF̂Ĥeff F̂†t Ôe−iF̂Ĥeff F̂†t |�0〉
= 〈�0|F̂eiĤeff t F̂†ÔF̂e−iĤeff t F̂†|�0〉. (B6)

The right-hand sides of Eqs. (B5) and (B6) are the same
(i.e., the evolution of O(t ) remains identical regardless of
the phases of Ck) as long as two conditions are fulfilled.
First, the initial state |�0〉 must be an eigenstate of F̂ , so
that the operation F̂†|�0〉 simply multiplies it by a phase
factor. This is the case, e.g., for a single product state, such
as |�0〉 = |⇑; ↓(1),↑(2), . . . ,↓(Nbath )〉. Second, the operator Ô
must commute with F̂ , so that F̂†ÔF̂ = Ô. This is the case,
e.g., for operators Ŝ(0)

z or Ŝ(k)
z .

A similar reasoning can also apply to a randomly chosen
initial state which has the form

|�0〉 =
∑

j

α j | j〉, (B7)

where the sum runs over many basis states | j〉 (all the possible
basis states, or limited to some subset, e.g., with given total
spin), and all the coefficients α j are complex numbers, having
independently random phases picked from a uniform distribu-
tion. The operation F̂†|�0〉 modifies the phase of each α j in
a way that is indistinguishable from picking another random
choice for each arg α j . Therefore, using a Hamiltonian with
different phases of Ck results in the same outcome as replacing
the random initial state with another, equally random one.

APPENDIX C: ALTERNATIVE WAY OF DEFINING
THE PSEUDOSPIN BASIS

1. Using a linear combination of molecular states as a
pseudospin state

In the main text (Sec. II B), we have shown how two
specific molecular levels can be used as pseudospin basis
states. There is also an alternative possibility of defining the
pseudospin basis, which appears if the molecular spectrum

has two or more degenerate levels (as is the case in the zero-
field limit). In this case, it is possible to define an effective
pseudospin state as a linear combination of these degenerate
levels.

As an example, suppose that we have defined a pair of
atomic levels as |⇓〉, |⇑〉, and defined |↓〉 as some molec-
ular level |N = 0, F, MF 〉 which is not degenerate with any
other levels. Suppose also there exist several degenerate N =
1 molecular levels |u1〉, |u2〉, |u3〉, . . .. Finally, assume that
V̂ (k)

atom-mol has nonzero matrix elements between the product
states |⇑; ↓(k)〉 ↔ |⇓; u(k)

i 〉, while couplings to other states are
zero or off-resonance. Under these conditions, the action of
V̂ (k)

atom-mol on |⇑; ↓(k)〉 is given by

V̂ (k)
atom-mol|⇑; ↓(k)〉

=
∑

ui

∣∣⇓; u(k)
i

〉[〈⇓; u(k)
i

∣∣V̂ (k)
atom-mol|⇑; ↓(k)〉]

≡ C∗
k |⇓; ↑(k)〉, (C1)

so that the up-spin state is given by

|↑(k)〉 =
∑

ui

〈⇓; u(k)
i

∣∣V̂ (k)
atom-mol|⇑; ↓(k)〉

C∗
k

|u(k)
i 〉. (C2)

The magnitude of the interaction parameter C∗
k can then be

found by normalizing |↑(k)〉 to unity. It is convenient to simply
take C∗

k as a real and positive normalization factor, so that

C∗
k = Ck =

√∑
ui

∣∣〈⇓; u(k)
i

∣∣V̂ (k)
atom-mol|⇑; ↓(k)〉∣∣2

. (C3)

Therefore we can define an effective pseudospin state |↑(k)〉
as a linear combination of |u(k)

i 〉, with a composition differ-
ent for each molecule k (since the dipole interaction matrix
elements depend on the molecule positions). It is easy to
check that V̂ (k)

atom-mol couples the states |⇑; ↓(k)〉 and |⇓; ↑(k)〉
only to each other. Therefore, each molecule k remains in the
subspace of states |↓(k)〉, |↑(k)〉 throughout the time evolution,
mimicking a two-level system. Note that in this approach, Ck

is defined as always real and positive, and complex values in
the spin interaction term are instead hidden in the coefficients
〈u(k)

i |↑(k)〉.
In the main text, our derivation of the effective Hamiltonian

assumes that |↑(k)〉, |↓(k)〉 are both chosen as eigenstates of
ĥ(k)

mol. If all the levels |u(k)
i 〉 have exactly identical energies,

their linear combination is indeed an eigenstate of ĥ(k)
mol. Even

if the energies of |u(k)
i 〉 are not identical, the scheme should

still work, as long as the energy differences are sufficiently
small. Assume the maximum considered duration of the sys-
tem evolution is τmax. As long as the energy differences are
�1/τmax, the individual components of |↑(k)〉 remain in phase
within the time τmax, and |↑(k)〉 approximately behaves like
an eigenstate. We note this scheme is conveniently combined
with using electric fields to tune the mismatch c�. A small
electric field modifies mostly the atomic energies, leaving the
molecule energies almost unchanged, and nearly completely
preserving the degeneracy of |u(k)

i 〉.
Note that this scheme only works because the molecule-

molecule interactions are negligible. This is because the
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TABLE III. Relevant physical parameters of the 85Rb – 40Ca 19F
hybrid system in an electric field Edc = E res

dc tuned to equalize the
transition frequencies c0, cS . ‡ marks atomic state properties obtained
by a calculation with the Python ARC package. Radiative atomic
state lifetimes are calculated for the 0 K temperature limit, under
the assumption of no electronic or magnetic fields.

E res
dc 3042.5 mV/cm‡

Brot 2π × 10267.539 MHz [66]
d 3.07 debye [96]
cS 2π × 20528.349 MHz
μ� 1.72 debye
c0 2π × 20528.328 MHz‡
c� −2π × 21 kHz‡
μ� 2539.79 debye‡
μ�μ�/(4πε0|1.5 µm|3) 2π × 195 kHz
Lifetime of |⇑〉 1.1 × 10−4 s‡
Lifetime of |⇓〉 2.5 × 10−4 s‡

composition of |↑(k)〉 is defined by the angles θk , φk relative to
the atom, while molecule-molecule interactions would act at
many different angles, and so would not reliably preserve the
composition of |↑(k)〉.

An advantage of this approach is that it allows us to realize
Ck with forms otherwise not available. In particular (as we
show for a specific example in Appendix C 2), it allows us to
realize a system where Ck does not cross zero regardless of
the particle positions, which may be desirable in some cases.
On the other hand, this approach complicates the preparation
of a desired initial state. It is difficult to prepare a molecule
in a specific linear combination of degenerate levels, with
precisely defined amplitudes and phases. However, even with
this complication, certain initial states might be attainable,
e.g., by setting up the initial positions, exciting the atom into
the state |⇑〉, letting it transfer its excitation to the molecules,
and measuring the atom state at a specific time to fix the
molecule states [103].

2. Example of realization for CaF system

To demonstrate the above approach, here we consider an
example system, composed of 40Ca 19F molecules as bath
spins, and an 85Rb atom as the central spin. We use an analo-
gous presentation as in Sec. II E 2 of the main text. The electric
field is set to E res

dc = 3042.5 mV/cm, while the magnetic field
is zero. The molecular down-spin state is chosen as

|↓(k)〉 = |(N = 0, F = 0, MF = 0)(k)〉. (C4)

The molecular up-spin state |↑(k)〉 is defined as a linear combi-
nation of three N = 1 states, which we denote as |u(k)

0 〉, |u(k)
+1〉,

|u(k)
−1〉: ∣∣u(k)

0

〉 ≡ |(N = 1, F = 1−, MF = 0)(k)〉, (C5)

∣∣u(k)
+1

〉 ≡ |(N = 1, F = 1−, MF = +1)(k)〉, (C6)∣∣u(k)
−1

〉 ≡ |(N = 1, F = 1−, MF = −1)(k)〉. (C7)

In zero field, these states have exactly identical energies. In
the small electric field E res

dc , the energy of the MF = 0 state
differs by approximately 2π × 300 Hz from the other two,
which is a difference small enough that we can ignore it. (We
omit any other possible sources of energy shifts, such as level-
dependent tensor shifts caused by optical traps.) The relevant
molecular transition dipole moments at electric field E res

dc are
found from numerical calculations, and they have the same
value for transitions to all three states |u(k)

q 〉:
μ� ≡ 〈

u(k)
q |d̂q|↓(k)〉 ≈ 0.561d = 1.72 debye. (C8)

The atomic pseudospin states are chosen as

|⇓〉 =
∣∣∣n = 49, l = 1, j = 3

2 , mj = + 1
2

〉
, (C9)

|⇑〉 =
∣∣∣n = 48, l = 2, j = 5

2 , mj = + 3
2

〉
. (C10)

The corresponding transition dipole moment is found numer-
ically as μ� ≡ 〈⇑|D̂+1|⇓〉 = 2539.79 debye.

Using Eq. (C3), the expression for the resulting Ck is

Ck =
√√√√ +1∑

q=−1

∣∣〈⇓; u(k)
q

∣∣V (k)
atom-mol|⇑; ↓(k)〉∣∣2

=
√√√√ +1∑

q=−1

∣∣〈⇓∣∣D̂−1

∣∣⇑〉〈
u(k)

q

∣∣d̂ (k)
q |↓(k)〉v(k)

−1;q

∣∣2

=
√√√√ +1∑

q=−1

∣∣−μ�μ�v
(k)
−1;q

∣∣2

= |μ�||μ�|
4πε0|Rk|3

√
5 − 3 cos2 θk

2
, (C11)

which at Rk = 1.5 µm gives

Ck = 2π × 195 kHz

√
5 − 3 cos2 θk

2
. (C12)

Similarly to the example described in Sec. II E 2, the elec-
tric field strength E res

dc has been found numerically (defined
with accuracy to 0.1 mV/cm) to minimize the resulting tran-
sition energy mismatch c� = −2π × 21 kHz. Around the
value E res

dc , changing Edc by 0.1 mV/cm changes c� by ap-
proximately 2π × 65 kHz. Therefore keeping c� smaller than
the interaction strength requires controlling the electric field
strength down to the ≈0.1 mV/cm level. Such fine control
is difficult, but plausible, since it is possible to measure (and
subsequently compensate) stray electric fields with accuracy
down to ≈0.01 mV/cm [128,129]. The parameters of this
example system are given in Table III.
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