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Spin—spin interaction and magnetic Feshbach resonances in collisions of high-spin
atoms with closed-shell atoms
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We investigate interactions and ultracold collisions of high-spin but spherical atoms with closed-shell atoms,
focusing on the example of Cr with Yb. Such a combination has only one potential energy curve but gives rise
to a substantial intra-atomic spin—spin interaction, which causes Feshbach resonances due to rotationally excited
states. We find such resonances are guaranteed below 250 G and can reach widths of tens of G in favorable
circumstances. We study the effect of hyperfine structure, which can create additional wide resonances at low
fields. Finally, we consider isotopic substitution and show that for any realistic potential it is very likely that at
least one combination of commonly used isotopes will have resonances with experimentally favorable properties.
Thus, this is a promising system for both molecule formation and studying quantum mixtures including dipolar

species.
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I. INTRODUCTION

There is currently a great interest in studying dipolar
physics with ultracold systems. The long-range anisotropic
dipole-dipole interaction opens up many avenues of new
research. These include novel many-body physics such as
quantum droplets and supersolidity [1-3], spin dynamics in
lattices [4], and applications in quantum computing and simu-
lation [5-9]. The physical systems used to realize such dipolar
interactions include highly magnetic atoms—such as Cr, Dy,
and Er—and heteronuclear molecules with permanent electric
dipole moments.

Magnetic Feshbach resonances [10] often play an impor-
tant role in such studies. They can be used to tune the strength
of a contact interaction, allowing the dipolar nature of the
interaction to be brought out [11-13]. They also form the basis
of magnetoassociation [14]. This is where the magnetic field is
tuned across a resonance, such that atom pairs coherently fol-
low the resonant state as they cross the threshold and become a
weakly bound state; this forms a crucial step in forming ultra-
cold molecules from atoms, combined with coherent optical
transfer to the ground state [15]. Understanding the properties
of such Feshbach resonances is thus crucial for many aspects
of this research.
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One specific area of interest is in ground-state molecules
with both electric and magnetic dipole moments. These
give additional possibilities for control beyond closed-shell
molecules due to the additional spin [16—19]. One avenue
for forming such molecules is through magnetoassociation
of alkali-metal with closed-shell atoms. The Feshbach res-
onances in these systems are due to the weak distance
dependence of the hyperfine coupling and are sparse in field
and extremely narrow [20-23]. They have been observed for
Rb+Sr [24], Li+Yb [25], and Cs+YDb [26], but have not
yet been used for magnetoassociation [27]. Another route is
through direct laser cooling of molecules, which was ini-
tially demonstrated for simple diatomic species such as CaF
[28,29], SrF [30,31], and YO [32,33], but has recently been
extended to polyatomics [34].

More recently, attention has extended towards the possi-
bility of forming molecules with high-spin atoms [35-43].
The larger spins give both richer internal structure and larger
magnetic dipole moments. However, the complexity of the
interatomic interactions can pose problems for interpreting
experiments and understanding the system well enough for
molecule formation and quantum few-body applications.

The purpose of the present paper is to investigate the inter-
actions and ultracold scattering of high-spin spherical atoms
with closed-shell atoms. We take Cr(’S)+Yb ('S) as our ex-
ample system. The intent is to find a class of systems with
the simplicity and understandable structure of alkali-metal
+ closed-shell systems but with much stronger resonances.
We perform electronic structure calculations and show that
the spin—spin interaction provides a substantial coupling for
this system. We then perform scattering calculations and find
that the Feshbach resonances caused by this coupling have
useful widths and are guaranteed to exist at low to moderate
magnetic fields. We also find particularly good tuning of the
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properties by isotopic substitution, so this system has signif-
icant insurance against unfavorable scattering lengths in any
one isotopic combination. These results show Cr+Yb to be
a promising system both for controlling interaction strengths
and for molecule formation and show promise for a wider
class of similar systems.

The structure of the paper is as follows. Section II intro-
duces the theoretical and computational methods we employ.
Section III presents the main results and their robustness.
Section IV summarizes our findings and prospects.

II. THEORY

The interaction of ground-state Cr and Yb produces only
a single electronic interaction potential. This contrasts with
the scattering of pairs of alkali-metal atoms, where there are
two interaction potentials and the scattering dynamics is dom-
inated by the coupling due to their splitting. Our present case
is structurally simpler and as a result lacks this mechanism.
Couplings in this system must therefore come from other
interactions.

A. Spin-spin interaction

The spin—spin interaction arises between the magnetic
dipoles of two or more unpaired electrons. There are a number
of ways of representing this coupling, which are useful in
different circumstances. The first we consider is suitable for
the direct interaction of any two electrons [44],

o= -@i3 222G 5) 20, ()
4 r

where §; and §, represent the two interacting electron spins,
and r and f are the magnitude and direction of the vector
between them. g, is the electron g factor, ug is the Bohr
magneton, and u is the permeability of free space. T2(-, -)
is a rank 2 tensor product. In order to consider the effects
on atomic scattering, we must have an operator that acts on
atomic coordinates rather than electronic ones. In systems
where the two interacting spins are centered on different col-
lision partners, it may be appropriate to simply substitute the
atomic separation R for the electron separation r; this form
of the operator is commonly used in scattering of pairs of >S
atoms, including hydrogen and alkali-metal atoms [45—47],
and is thus familiar in the theory of ultracold atoms.

When the spins involved in the coupling are centered on
the same collision partner, or Eq. (1) is otherwise unsuitable,
a molecular form of the operator is often appropriate. This can
be written in terms of the coupled total spin S of all electrons
involved in the coupling as [44]

Vss = 2A(R)T?(S, 8) - T*(R, R), 2)

where the parameter A(R) generally needs to be obtained
numerically or fitted to experiment [48]. There is also a well-
known contribution to A(R) from the spin-orbit in second
order; both contributions can be obtained from electronic
structure calculations [49,50]. In a free atom, this coupling
is zero by symmetry, but if another atom approaches and the
orbitals of two electrons are distorted differently, it takes on a
nonzero value. Due to the close contact between the electrons
on the same atom, the interaction can become relatively large
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FIG. 1. Electronic interaction potential Ve (R) of Ref. [36] (top)
and spin—spin coupling coefficient A(R) (bottom) for Cr+Yb. We
show both electronic structure (red points) and fitted functional forms
(black).

in this case. This is the form of the operator we use throughout
this paper; it is commonly used in molecular spectroscopy
[44], but it has not been used in ultracold atomic scattering.

The interaction potential Vie.(R) for Cr+Yb has been
calculated previously in Ref. [36]. It has a depth of about
D, = 2860 cm~!, the leading long-range term —CgR® has
dispersion coefficient Cg = 1195 Ej ag, and it supports 75
vibrational bound states. We calculate the spin—spin coupling
coefficient A(R), taking into account all unpaired electrons,
using the time-dependent density function theory framework
developed by Neese [50] and implemented in the ADF pack-
age [51,52]. For these calculations, we use the ZORA scalar
relativistic approach [53] and QZAP basis set [54] with
the PBE functional [55], which works well for molecular
properties.

The potential and the calculated coupling are shown in
Fig. 1. For use in scattering, we fit Vi .(R) to a Morse-
long-range functional form [56] and the spin—spin coupling
to a double exponential decay; details are given within the
Supplemental Material (SM) [57]. This gives a value of
A =0.41 cm™! at the inner turning point. These fitted func-
tions are also shown in Fig. 1.

B. Scattering

The Hamiltonian for scattering of Cr and Yb, each in their
ground electronic state, is written as

B d: R

— e T T h Velec (R Vss(R). 3
ZMdR2+2/LR2+ cr + Velee(R) + Vss(R).  (3)

A=
Here, u is the collisional reduced mass, and £? is the operator
for rotation of the two atoms around each other, with the
associated quantum number L and projection My ; we include
only L =0 and 2 functions here as the coupling is pertur-
bative. Unless otherwise stated we use >>Cr and "*Yb, so
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neither atom has nuclear spin. The Yb atom is thus structure-
less; the Cr atom has spin § = 3, so has Zeeman interaction
szr = ,uBngS'z, where B is the magnetic field defining the z
axis and S, is the projection operator for S along that axis,
with quantum number My. Note that S and My are also the
total spin and projection of the system. We use coupled-
channels calculations for both scattering and bound states. The
coupled equations are constructed and solved [58—60] using
MOLSCAT [61,62] for scattering calculations and BOUND and
FIELD [62,63] for bound-state calculations. Further details of
the calculations are given within the SM [57].

The key features of the scattering that we are interested
in are magnetic Feshbach resonances. These occur when a
bound state crosses a threshold as a function of the magnetic
field, and there is a suitable coupling between the incoming
state and the bound state. Although there is only a single
interaction potential for this system, bound states can cross a
threshold if they have different Mg and therefore different Zee-
man effects. The coupling here is provided by the spin—spin
interaction, which in first order can change the partial wave by
AL = 0, +2, but has no matrix elements between L = L' = 0
functions. It also changes AMg = 0, +1, 2, with a compen-
sating change in M, . This suggests that for s-wave scattering
in the lowest initial state—L = 0, Mg = —3—the candidate
states to cause Feshbach resonances are those with L = 2 and
Mg = —2or —1.

The signature of a magnetic Feshbach resonance is a pole
in the scattering length, a(B) = apg[1 — A/(B — Bes)] [64].
The resonance is described by three parameters: By is the res-
onance position, A is its field width, and ay, is the background
scattering length far from resonance. With these definitions,
the width A can be artificially large or small when ays is
particularly small or large, respectively. We instead follow
Ref. [23] and use a normalized width A = apg A/a, where a
is the mean scattering length [65], which is 55 ag here. This is
a better measure than A itself, both of the coupling strength
and of the use of the resonance for tuning scattering lengths
or magnetoassociation. We use the algorithms of Frye and
Hutson [66,67] to locate and characterize the resonances in
our scattering calculations.

III. RESULTS
A. Single channel

As a preliminary step, we consider the system without
internal structure or spin—spin coupling. This is a useful first-
order picture because all the spin-dependent terms in the
Hamiltonian are relatively weak and expected to act pertur-
batively. Figure 2 shows the s-wave scattering length a and
near-threshold bound states as a function of D. The top panel
shows the usual behavior of the scattering length: it is cyclic,
running between +oo but most likely to be around a [65].

The lower panel of Fig. 2 shows the corresponding near-
threshold bound states. As expected, these have the same
periodicity as the scattering length, with an s-wave bound state
crossing threshold at poles in a. The d-wave bound states also
have the same periodicity but offset by half a cycle such that
one crosses the threshold when a = a [68]. There is always
a single bound state in a certain “bin” of energy below the
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FIG. 2. (Top) The s-wave scattering length for four isotopic com-
binations. (Bottom) Near-threshold bound states for >>Cr +'74Yb for
L = 0 (black) and 2 (red). Both are shown as the depth of the po-
tential D, is varied. The horizontal grey line indicates a. The dashed
boxes show the depth of the top bin for each L and the variation in
D, that corresponds to a cycle of scattering length.

threshold, which is 540 MHz for L = 0 and 1400 MHz for
L =2 [68]. The uncertainty of D, was estimated to be 10%
[36], which covers several cycles of a. We, therefore, cannot
predict the true value of a nor position of the bound states,
but we can use this cyclic dependence to explore the behavior
over one complete cycle; because this system has only a
single potential, this procedure covers the entire range of
possible behaviors of this system and so can stand in for
any possible true potential. Therefore, in the remainder of the
paper, we scale D, from 2757 to 2850 cm ™! to cover a single
full cycle of a from —oo to +o0; this range is indicated by
the black box in Fig. 2 and for convenience we map this to
a scaling from O to 1. We also plot a for three other isotopic
combinations, showing that this cycle can be shifted across
most of a period by isotope substitution; we will return to this
idea later.

We now look to the patterns of bound states that can cause
Feshbach resonances. As discussed above, the states of most
interest are d-wave (L = 2), and these are shown in Fig. 3
as a function of magnetic field, for two scattering lengths
a = oo and a = a. In the absence of spin—spin coupling, M
is a good quantum number so the bound states lie parallel
to the thresholds, which support them. Resonances can occur
where these states cross thresholds and the selection rules for
the spin—spin coupling are satisfied; these locations are also
marked. For the case of a = a (blue lines), there is a d-wave
state right at the threshold and the next at the bottom of the top
bin, see Fig. 2. The true least-bound state must lie between
these two states, so the resonance caused by the lower state
represents the maximum field at which the first resonance
will appear; this field is Bes = Ey/(upgsAms) = 250 G for
Amg; = 42 and 500 G for Am,; = +1.
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FIG. 3. Thresholds and near-threshold bound states with L = 2
for 2Cr +'7*Yb, for two scalings of the potential giving a = oo (red)
and a = a (blue); the least-bound state for a = a is at zero binding
energy (as shown in Fig. 2) so the corresponding lines lie directly
below those for the thresholds. Crossings that can cause Feshbach
resonances, with selection rules as described in the text, are shown
as dots.

B. Resonance results

We locate and characterize each resonance at the lowest
Mg = —3 threshold while varying the potential. We use 100
different potentials, with D, equally spaced across the cycle
of scattering length as discussed above and marked in Fig. 2,
and we characterize all resonances up to 800 G for each
potential. These results are presented in Fig. 4; full tabulations
of resonance parameters are contained within the SM [57]. We
can see that resonances are quite likely to occur at very low
fields, as suggested from Fig. 3, but they are correspondingly
narrower. This occurs because the bound states that can cause
resonances at such low fields are extremely weakly bound
in their own channels, and so extend to very long range and
have less probability density in the short-range region where
the coupling is significant [22]. Conversely, the widths have
peaks at 65 and 130 G, which reach over 10 G width, due to
the large s-wave scattering length around scalings of 1 or 0,
which enhances the wavefunction at short range and thus the
width [22]. Even away from these peaks, there are resonances
with usefully large widths (A > 0.1 G) for most scalings. The
resonances for AMg = 41 are typically wider than the cor-
responding ones for AMg = +2—due to angular momentum
factors and a smaller relative magnetic moment—but are also
at higher field; the 65 and 130 G peaks thus correspond to
AMg = +2 and +1 resonances respectively, as shown by red
points in Fig. 3. The oscillation in width around scaling of 0.5
(250 and 500 G) is related to a d-wave shape resonance.

The characteristics of widths shown here are determined
by only the (accurately calculated) Cg coefficient, together
with known atomic properties. The patterns of widths are,
therefore, very robust predictions. It is unknown a priori
whether a particular system does indeed have a resonance in a
particular field range—it depends on the short-range potential,
or equivalently on the scattering length—but we can say with
certainty that if a resonance does exist at a specific field it will
have properties as predicted here. For example, Am; = +1
resonances near 130 G will always occur for potentials with
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FIG. 4. Normalized widths A of the characterized resonances for
32Cr +17*YD for 100 potentials. The scaling runs from D, = 2757 to
2850 cm~! and covers the full cycle of scattering length from —oo
to 400 as marked by the black box in Fig. 2 and discussed in text.
Both panels present the same results: the upper panel shows A as a
function of potential scaling, with B, encoded in the color of the
points; and the lower panel shows A as a function of B, with the
scaling encoded in the color of the points.

large a, so they will always have greatly enhanced widths. The
main source of uncertainty here is our calculated A(R), which
scales the widths in a simple (perturbative) way and does not
change the overall pattern. In fact, very similar patterns will
occur for any system of a high-spin spherical atom colliding
with a closed-shell atom. There will be a different scaling of
the magnetic fields (through the binding energies, as shown
in Fig. 3) and widths due to different Cg, u, and A(R) for
different systems [22,68], but the overall pattern of the widths
is universal.

C. Effects of hyperfine coupling

We now turn to the effects of hyperfine interactions on
the scattering [69]. *>Cr has a nuclear spin of i = 3/2, so
we add the Fermi-contact interaction AygS - 1 to the scattering
Hamiltonian. This couples S and i to form f = 3/2,5/2,7/2,
and 9/2; at zero field, the states are spread over ~500 MHz
[70] above the ground state f = 9/2. These levels are split
by a magnetic field into states, which are characterized by m
at low field, and the selection rule for Vss becomes Am =
0,+£1, 2. As the field increases, the spins decouple, and
states are again characterized by My and m;. In this regime,
the nuclear spin becomes mostly a spectator, and the system
behaves similarly to the i = O case.

Figure 5 shows results for >*Cr +'7*Yb including hyperfine
coupling. The top panel shows a crossing diagram equivalent
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FIG. 5. Feshbach resonances for **Cr +'7*Yb. (Top) Hyperfine
crossing diagram, focusing on the low-field region; red lines and
points show bound states and resonances for the case of a = oo.
(Bottom) Normalized widths A as a function of By, with the scaling
encoded in the color of the points. The scaling in this case covers
scattering lengths from a &~ a through £o0 and back to a.

to Fig. 3, for a = oo. For states originating from the same
f = 9/2 hyperfine manifold, the crossings are shifted to a
higher field for a given binding energy due to a reduction
in the relative magnetic moment and the nonlinear Zeeman
effect. However, it is also possible to have resonances due to
states from other hyperfine manifolds, and in this case, those
with f = 7/2 occur at very low fields. The bottom panel of
Fig. 5 shows the corresponding resonance widths in the lowest
channel (f,my) =(9/2,—-9/2). Note that we use the same
set of D, as previously, but due to the different reduced mass
u these now correspond to different scattering lengths. This
set still covers a full cycle of scattering length, but instead of
running from 400 to —oo, it now runs approximately from a
through +o0 (close to scaling 0.5) and back to a, see Fig. 2.
The most notable feature is the presence of low-field reso-
nances with very large widths; these are caused by states with
f =17/2, which cross the threshold of interest at low fields
when a is close to a pole and so have greatly enhanced widths
as discussed above. Whether this feature occurs in the real
system is once again dependent on the (unknown) scattering
length, but the possibility of this enhancement happening at
low field relies on only the known atomic hyperfine struc-
ture and the accurately calculated Cs coefficient and is not
due to any quirk of our particular potential. As expected, at
higher magnetic fields from about 400 G, the pattern of widths
closely resembles that for >>Cr shown in Fig. 4.

D. Isotopic variation

We have so far considered properties while varying the
interaction potential. In the real system, the potential is fixed,
but we can instead change the isotopes of either atom. This
changes the reduced mass, which is conceptually very similar
to scaling the interaction potential, but only discrete steps are
available. This effect is shown in Fig. 2 for combinations of
the two most experimentally friendly isotopes of each species:
2Cr and Cr, and '°Yb and *YDb. It can be seen that
changing the Yb isotope shifts the scattering length by about
20% of a cycle, and changing the Cr isotope shifts by 55% of
acycle.

We repeat our calculations of resonance parameters for
the four isotopic combinations above for each of our scaled
potentials. Full tabulations of resonance parameters are again
included within the SM [57]. We find that for every potential,
there is always at least one resonance below 300 G with
A > 0.1 G and a 2/5 chance of one with A > 1 G. Even if
we restrict that the background scattering length should be
moderate and positive—0 < apg < 4a—then 95% of poten-
tials have a resonance below 300 G with A > 0.1 G. Both
species have further isotopes that could be used and would
make these conclusions even more robust.

The interactions and resonances considered here will also
occur in a range of similar systems. Any closed-shell atom
could be used in place of Yb, for example, alkaline-earth
metals such as Sr, which is readily prepared at ultracold
temperatures. In place of Cr, there are a number of high-spin
spherical atoms that could be used, such as Mo or Mn if they
can be prepared at ultracold temperatures. Perhaps the most
interesting possibility is Eu, which has an 8S ground state
and two stable isotopes, each with rich hyperfine structure,
and which was Bose-Einstein condensed recently [71]. Our
preliminary calculations suggest that the spin—spin coupling
is similar or somewhat stronger in Eu+Yb than in Cr+YDb so
that this system may be fertile ground for future work.

IV. CONCLUSIONS

We have investigated interactions and collisions for a com-
bination of high-spin spherical and closed-shell atoms, taking
Cr+YD as our example system. The primary coupling mech-
anism is the intra-atomic spin—spin interaction, which we
calculate to be a substantial fraction of a wavenumber in the
interaction region. This couples rotationally excited states to
s-wave scattering and creates magnetic Feshbach resonances.
We locate and characterize these resonances in our scattering
calculations and interpret the resulting patterns of widths,
using a representative sample of interaction potentials to cover
the range of possible scattering lengths. These show that such
resonances are generally of the order 0.1 G wide at moderate
fields of a few 100 G, but can reach much larger widths
when enhanced by large background scattering lengths. When
hyperfine is present in the system, there is additional potential
for extremely broad resonances at very low fields.

Selecting among isotopes allows some control of scattering
lengths and, thus, resonance properties, and we show that
this system is extremely robust to unlucky potentials when
as few as two isotopes of each species are considered. The
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precise details of which resonance is favorable depend on the
unknown scattering lengths, but our conclusions depend on
only known atomic quantities, the accurately calculated Cg
coefficient, and our A(R). Whatever the true potential, a choice
of isotopes allows us to select for resonance properties that are
experimentally favorable.

These Feshbach resonances will have applications both
in controlling atomic mixtures and in molecule formation.
Once formed in weakly bound Feshbach states, molecules
may be optically transferred to the ground state. The re-
sulting ground-state molecules will have large magnetic
moments inherited directly from the high-spin atom and
electric dipole moments—CrYb is predicted to have 1.2 D
[36]. These will have applications in a wide range of
quantum computing and simulation settings in addition to

fundamental interest in the behaviors of molecules with two
dipole moments.
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