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Kacper Cybiński1, Marcin Płodzień2, Michał Tomza1, Maciej Lewenstein2,3,
Alexandre Dauphin2,4 and Anna Dawid5,∗

1 Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
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Abstract
Machine learning (ML) is a promising tool for the detection of phases of matter. However, ML
models are also known for their black-box construction, which hinders understanding of what they
learn from the data and makes their application to novel data risky. Moreover, the central challenge
of ML is to ensure its good generalization abilities, i.e. good performance on data outside the
training set. Here, we show how the informed use of an interpretability method called class
activation mapping, and the analysis of the latent representation of the data with the principal
component analysis can increase trust in predictions of a neural network (NN) trained to classify
quantum phases. In particular, we show that we can ensure better out-of-distribution (OOD)
generalization in the complex classification problem by choosing such an NN that, in the
simplified version of the problem, learns a known characteristic of the phase. We also discuss the
characteristics of the data representation learned by a network that are predictors of its good OOD
generalization. We show this on an example of the topological Su–Schrieffer–Heeger model with
and without disorder, which turned out to be surprisingly challenging for NNs trained in a
supervised way. This work is an example of how the systematic use of interpretability methods can
improve the performance of NNs in scientific problems.

1. Introduction andmotivation

Machine learning (ML) promises a revolution in science, similar to the current revolution in industry [1]. In
quantum physics, neural networks (NNs) serve as a flexible and promising representation of quantum
states [2–4] and a booster for quantum technologies [5–7], e.g. as entanglement classifiers [8, 9]. Neural
networks are especially promising in the detection of phases of matter and have been used for
classical [10–15], quantum [16–30], and topological [31–39] phase transitions with supervised [10, 11,
27–33] and unsupervised [12–26, 34–39] approaches as well as for experimental data [40–44]. Other
examples include ML approaches relying on dimensionality reduction [45–48], kernel methods [49–51],
topological data analysis [52–55], and quantum NNs [56–58].

However, before NNs join standard toolboxes for the analysis of phases of matter, they need to become
more interpretable (so we understand what they learn) and reliable (so we can trust their predictions). Note
that interpretability is a stronger condition than reliability (if we understand exactly how an NN makes its
predictions, we usually can trust it). There are extensive efforts to make automated approaches more
interpretable [17, 23, 37, 54, 59–63], which should ultimately lead to learning phases of matter and assisting
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physicists in understanding the learned order parameters [43, 64–67]. However, the community focuses
predominantly on a special representation of data, that is, spin configurations. Therefore, the question of the
interpretability and reliability of NNs applied to different quantum data remains wide open.

Reliable NNs are expected to generalize robustly to new scenarios [68]. It is especially challenging in the
case of the out-of-distribution (OOD) generalization when the test data come from a different distribution
than the training data. Naturally, no OOD generalization should be expected for unrelated training and test
distributions. However, a robust model also performs well under a limited distribution shift. Such an OOD
generalization of a network can be checked when we have enough information on the test distribution; for
example, in a supervised scenario, we have access to labels of some OOD test data. When we do not have such
labels, our trust in the OOD generalization of an NN has to be limited, especially in the presence of spurious
correlations in the training data.

In this work, we show how we can increase trust in the OOD generalization of an NN in the absence of
labeled OOD data. To this end, we study explanations of NN predictions and the representation of data
learned by an NN and discuss patterns that correlate well with the network robustness. We perform this
analysis on an example of data coming from a prototypical topological Hamiltonian, that is, the
Su–Schrieffer–Heeger (SSH) model. The training data come from the standard SSH model, while the OOD
test data are from the SSH model with the disorder, as presented schematically in figure 1(a). In both
regimes, the network task is the same, i.e. it is to classify topological and topologically trivial phases.
Therefore, this work belongs to a subfield of transfer learning, called domain adaptation [69].

Previous work [34] showed that standard convolutional NNs (CNNs) trained on the data from the SSH
model struggle to generalize under the disorder. The authors solved this problem by using a domain
adversarial NN. Here, we do not aim to improve this solution. Instead, we want to understand the reason for
the failures of standard CNNs and propose tools that can inform the user whether to expect an OOD
generalization from a trained CNN or not without labeled data.

This paper is structured as follows. We start by describing the data set and the learning task of a CNN in
sections 2.1 and 2.2. In section 2.3, we discuss an interpretability technique called class activation mapping
(CAM) [70], which provides explanations of CNN predictions as sketched in figure 1(b). To study the data
representation learned by a CNN, we need a dimensionality reduction technique such as principal
component analysis (PCA), presented schematically in figure 1(c), which we describe in section 2.4. We
present and discuss our results in section 3 and conclude in section 4.

2. Methods

2.1. The model Hamiltonian
The model proposed by Su, Schrieffer, and Heeger [72] describes spinless fermions on a one-dimensional
chain in a tight-binding approximation, with staggered nearest-neighbor tunneling amplitudes. It is
described by the Hamiltonian

Ĥ0 = v
N∑

n=1

ĉ†nσ̂xĉn +w
N−1∑
n=1

(
1

2
ĉ†n
(
σ̂x + i σ̂y

)
ĉn+1 + h.c.

)
. (1)

The SSH Hamiltonian can have alternative definitions depending on the conventions [73–75] (see
appendix A for more details). We consider a chain of N unit cells. Within each unit cell, there are two sites

that belong to sublattice A and B, respectively. The operator ĉ(†)i =
(
ĉ(†)A,i , ĉ

(†)
B,i

)
denotes the

annihilation(creation) operators on the respective sublattices in the system. σi denotes the Pauli matrices.
The tunneling amplitudes are different for intercell tunneling (between neighboring cells) – w and for
intracell tunneling (within a single unit cell) – v. For the remainder of this work, we fix the intercell
tunneling to w= 1.

Such a system exhibits two distinct phases: topological and trivial. They are characterized by a different
value of a topological invariant, called the winding number, which arises from the chiral symmetry present in
the system. For periodic boundary conditions (PBCs), the invariant is winding number ϑ. For open boundary
conditions (OBCs), the topological phase is characterized by the real space winding number and by the
presence of zero-energy eigenstates, corresponding to the half-filling of the system [74]. These states are
exponentially localized at the edges of the system. For this reason, they are referred to as edge states or edge
modes. The number of such zero-energy edge states on one edge is equal the winding number of the bulk. It
can be shown by bulk-boundary correspondence [72], that both formulations are equivalent; therefore, in
this work we use both approaches.
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Figure 1. Unsupervised study of out-of-distribution generalization with class activation mapping and principal component
analysis. (a) We train multiple randomly initialized CNNs to predict phases in the SSH model without the disorder (simple
regime) and study their OOD generalization to phases in the SSH model with disorder (complex regime). Only a handful of
trained CNNs learn meaningful features (instead of spurious correlations) that allow for successful OOD generalization. (b) We
analyze what data features are the most important for predictions of well- and poorly-generalizing CNNs with class activation
mapping (CAM) – an interpretability technique producing heatmaps that after overlaying on input samples indicate the most
important data elements for the prediction. (c) With principal component analysis (PCA), we study the similarity of the
representation learned by poorly- and well-generalizing CNNs for the data from the simple and complex regime. Panels (b) and
(c) are inspired by [70] and Reproduced from [71]. CC BY 4.0.

The interplay between the topological invariants of the system and the presence of the disorder can be
studied with the following Hamiltonian [73],

Ĥ1 =
N−1∑
n=1

tn

(
1

2
ĉ†n
(
σ̂x + i σ̂y

)
ĉn+1 + h.c.

)
+

N∑
n=1

mnĉ
†
nσ̂xĉn. (2)

Here, the tunneling amplitudes tn andmn vary from site to site. They include the added disorder in the
following way

tn = w+ 2Wωn, mn = v+Wω ′
n. (3)

The parameterW is the strength of the disorder, and ωn is a random variable drawn from the uniform
distribution on the interval [−0.5,0.5]. The topological invariants, to some extent, are robust to disorder.
However, for a strong enough value of the disorder, they are likely to change. Therefore, to account for
disorder in winding number calculation, we use a handy approximation based on infinite system winding
number calculation [76] (see appendix B for details). The relationship between winding number ϑ and
disorder strengthW/w for systems of the symmetry class such as equation (2) has been thoroughly studied in
[73], where they proposed a phase diagram for this scenario. The phase diagram we calculate using the
infinite system winding number approximation is in good agreement with their results.

2.2. Learning task and data set
In this work, we task a CNN with learning a mapping between a full set of eigenstates of the SSH
Hamiltonian from equation (1) and the corresponding winding number. We describe the CNN architecture
and training hyperparameters in detail in appendix C. To obtain the input data, we compute the eigenstates
of equation (1) using exact diagonalization [77] with OBC. The corresponding winding numbers are
computed by taking the same Hamiltonian with the PBC imposed. This is an approximate calculation, which
translates into calculating the winding number of an infinite system [76].
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The input data are matrices whose columns are squared moduli of the eigenstates of the system, sorted by
energy. We present exemplary input data samples in figure 1(a). The labels are corresponding winding
numbers. Because of the presence of chiral symmetry, the energy spectrum is symmetric, and the
zero-energy edge states correspond to the two middle columns of an input data sample. The amplitude of the
edge states peaks at the edges and decays exponentially into the bulk; therefore, we expect the edge pixels of
the middle columns to be the most indicative of these states in the topological phase.

We want to understand the general behavior of NNs, so we study multiple instances of CNNs obtained by
training them using the same hyperparameters but from different random initializations, following the
default uniform initialization in PyTorch [78]. We train and test our CNNs on data from a system without
added disorder, described by equation (1). We train them on data sampled in equal numbers from both
topological and trivial phases, far from the phase transition. The loss function we optimize in this task is
defined by the binary cross-entropy function [79]. We test CNNs on data sampled uniformly over a whole
range of v/w, including the close vicinity of the phase transition. The v/w values used to generate data points
in the three data sets (training, validation, and test) were different to prevent possible leakage of information.
Such choice of testing points allows us to assess the networks’ generalization, that is, its performance on
previously unseen examples that are sampled from the same underlying distribution of the data. Our
understanding is that data that are drawn from the same distribution share the same structure and set of
features.

A much more challenging task for NNs than the in-distribution generalization is to achieve OOD
generalization, that is, to perform well on data that come from a different distribution than the training data.
We expect ODD generalization when OOD data have a similar structure and set of meaningful features as
training data. In our case, these OOD data are data samples constructed from eigenstates of the disordered
SSH model described by equation (2). Many new features are added to the OOD data that arise from the
disorder-induced Anderson localization [80]. This results in more highly localized eigenstates, which render
the edge states less distinguishable with increasing disorder strength. Especially dangerous to the OOD
generalization are spurious correlations, which can be present in the training data. They refer to a situation
where some features of the input data and the label appear to be related to each other, but the relationship is
coincidental or confounded by an external variable [81].

To evaluate the network OOD generalization, we check its ability to recreate the phase diagram faithfully.
A viable error metric is the root mean square error (RMSE). In our case, it is computed as the square root
mean of an element-wise square difference between the target (y) and the predicted (ŷ) winding numbers, for
Nv

s values of intracell tunneling v/w, N
W
s values of the disorder amplitudeW/w, and Nr realizations of each

disorder amplitudeW/w. The number of entries in the y and ŷ arrays is therefore, Nel = NW
s · Nv

s · Nr, and
the RMSE formula reads

RMSE(y, ŷ) =

√√√√ 1

Nel

Nel∑
i=1

(yi − ŷi)
2
. (4)

Another metric we use is OOD accuracy, defined as the percentage of correct predictions out of Nel in the
winding number prediction task. Note that the network can output only binary predictions, however, when
we plot phase diagrams predicted by networks there are non-binary entries coming from averaging over Nr

realizations of each disorder amplitudeW/w.

2.3. CAM
MLmethods are usually black-box tools. They accomplish the tasks that we give them at the cost of not being
able to justify the outcome they provide. This shortcoming is known as the lack of interpretability.
Interpretability can be understood as ‘the degree to which a human can consistently predict the model’s
result’ [82]. There are numerous interpretability techniques that aim at a better understanding of the
network reasoning. We recommend their overview in [83]. In this work, we apply CAM, a simple pixel
attribution technique. CAM, given an input sample, produces a map highlighting the areas of the input that
contribute the most to the prediction of a considered class.

CAM is an attribution technique tailored for use with CNNs and leverages their design. A CNN produces
different representations of the input data during a forward pass through the network and encodes them in
different channels. CAM relies on the latent representation of the data present in the output channels of the
last convolutional layer in a network, visualized in figure 1(b) as colored activation maps, and performs their
weighted sum with weights αk [84]. The resulting map, after rescaling back to the original data size,
highlights the areas that were the most influential in predicting a considered class. The crucial part is the
choice of the weights αk. The original formulation of the method relies on reducing each channel output of
the last convolutional layer to a single number with global average pooling (GAP) layer [70]. The weights of
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fully-connected layer connecting those numbers with the output corresponding to the considered class C are
then used as αk for the weighted average of convolved images (see appendix F for more details). An obvious
limitation of this approach is the necessity for the NN architecture to include the GAP layer, which can limit
the applicability of CAM to existing trained networks.

This technique can be made architecture-agnostic [85–90]. The simplest extension is Grad-CAM [86],
which replaces the need for the GAP layer with gradients computed by backpropagation of the class output
to the last convolutional layer. We applied both techniques in our analysis, but they gave quantitatively the
same results, which is why in the discussion we only present the results obtained with CAM.

2.4. Dimensionality reduction
The information learned by an NN is stored throughout all its parameters. Analyzing the data representation
at different layers, i.e. how different input samples activate various network’s neurons, can help the
researchers extract this knowledge [91–94]. However, even for small NNs, the dimensionality of the
activation space is on the order of hundreds and more, and humans have difficulty comprehending data in
high dimensions. Thus, reducing data to a small number of dimensions is helpful for visualization purposes
and allows us to gain valuable information on the inner workings of NNs. An example of such insight might
be to extract which areas in latent space correspond to given learned concepts and, conversely, the relations
and distance between them that the network has learned [95, 96]. Dimensionality reduction of the data
representation is also used in a cluster-based interpretation technique [97] that aims to explain cluster
assignments within layers in terms of input features. To visualize and analyze data structure across NN layers,
we use PCA - an established linear dimensionality reduction technique.

PCA [98] relies on computing the principal components (PCs) of the data that are first stacked to form a
multidimensional tensor. The PCs are eigenvectors of the covariance matrix of this tensor, represented
schematically as orange arrows in figure 1(c). The magnitude of their corresponding eigenvalues orders
them, so the first PC represents the direction of the highest data variance, the second PC is orthogonal to it
and describes the direction with the second highest variance, etc. The original tensor is then projected into a
subspace spanned by the selected number of its PCs. The result is a tangible low-dimensional representation
of the data that presents the maximal variance of the original high-dimensional space. The low-dimensional
representation is needed as a preprocessing step for some ML algorithms or visualization purposes. Because
of the linearity of this reduction technique, the distance between the points and the density is primarily
preserved. It can be treated as representative of the distance in the original high-dimensional space.

3. Results and discussion

3.1. CNNs fail to generalize to data with disorder
CNNs succeeded in the training task posed by the disorderless SSH system. The training of all CNN instances
converged, and the networks achieved perfect (100%) accuracy on both the training and validation data sets.
The performance was also very good for all the trained instances when tasked with making predictions for
in-distribution data. The accuracy score for the in-distribution testing was greater than 95%. The only
regions where some test samples were misclassified were for data in the vicinity of the phase transition, which
were excluded from the training set.

Despite promising results within the training distribution, OOD generalization proved to be a
challenging task, as we show in table 1. We quantify the OOD generalization by testing the trained networks
on the phase diagram of the SSH model, generated for 25 disorder realizations, and presented in the
bottom-left corner of figure 2. Upon many initializations, we have found that only as little as 5% of them
manage to reproduce the shape of the phase diagram correctly. We used RMSE as a metric of distinction
between the well- and poorly-generalizing networks, with the threshold set at 0.2. We divide these networks
into two such groups and report their OOD accuracy. The well-generalizing networks achieve an OOD
accuracy of 84% and more on the data from the whole phase diagram. In contrast, a large majority (95%) of
CNNs have OOD accuracy only marginally higher than a random guess, as seen in the third row of table 1.
Moreover, this failure in the OOD generalization seems to be tied to convolutional layers as fully-connected
networks do not exhibit this behavior (see appendix D for details). Interestingly, well-generalizing CNNs
tend to predict the phase transition at values below v/w= 1, closer to v/w≈ 0.9− 0.95, as visible in
figures 2(h) and (j). They may take into account the finite-size effects that the infinite-system approximation
of the winding number fails to account for.

We can improve this poor statistic by introducing slightly disordered (W/w ∈ {0.01,0.05}) data into the
training data set. We treat this range of small disorders as a ‘perturbative’ regime in which we can label the
slightly disordered data with winding numbers calculated for respective disorderless points of the phase
diagram. This is a simplistic attempt at the domain adaptation, where we use ‘unlabeled’ data from test
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Table 1. Statistics (means± standard deviations) of 100 randomly initialized networks trained only on data without disorder,W = 0,
and on data including also slightly disordered samples,W/w ∈ {0,0.01,0.05}.

CNNs trained onW = 0 CNNs trained onW/w ∈ {0,0.01,0.05}

OOD generalization Well-generalizing Poorly-generalizing Well-generalizing Poorly-generalizing
Number of CNNs 5 / 100 95 / 100 22 / 100 78 / 100

Training accuracy ∼100% ∼100% ∼100% ∼100%
Test accuracy 95.5± 1.5% 97± 2% 94.7± 1.9% 97± 2%
OOD accuracy 84± 3% 55± 8% 86± 3% 61± 9%
RMSE 0.168± 0.025 0.46± 0.07 0.153± 0.031 0.41± 0.10

Figure 2. Comparison between a well- and poorly-generalizing CNN through the lens of CAM. First column: the expected CAM
result for a CNN that focuses on the edge states, obtained via a toy model in appendix G (first row), and the target phase diagram
(second row). (a) CAM-based explanation of the prediction of one of many poorly-generalizing CNNs (here, the OOD accuracy
of 50.3%) for an input sample from the disorderless SSH model at v/w= 0.27. CNN places more importance on states around
the one- and three-fourths of the spectrum. (b) One of the well-generalizing CNNs (OOD accuracy of 90.1%) in the same input
sample pays more attention to the localization of the edge states. However, (c) poorly-generalizing CNN (OOD accuracy of
52.3%) can also pay attention to edge states, and (d) well-generalizing CNN (OOD accuracy of 91.7%) can ignore edge states,
rendering the CAM analysis inconclusive. Panels (e)–(h) present the predicted phase diagram of the corresponding CNNs. The
phase diagrams are predicted winding numbers ϑ averaged overNr = 25 realizations of disorder, with Nv

s = 200 slices in v/w, and
NW

s = 500 slices inW/w directions. The CNNs selected for analysis were the ones trained on data with no and slight disorder,
W/w ∈ {0,0.01,0.05}.

distribution to improve the network performance between domains. As a result, the ratio of successful CNNs
increases from 5% to 22%. Other statistics remain qualitatively the same in both well- and poorly-generating
models. A performance comparison of 100 randomly initialized CNNs trained only on disorderless data and
CNNs trained also with slightly disordered data is in table 1. There are better domain-adaptation techniques
that could help in this setup. We have already mentioned a domain adversarial NN used in [34]. In
appendix E, we test the correlation alignment (CORAL) domain adaptation method and, interestingly, while
CORAL improves CNN performance on disordered data, it does so at the cost of lower performance in the
disorderless regime.

The failure of the trained CNNs should be contrasted with other works in which networks were trained
in a simple regime of a problem and successfully generalized out of the training distribution. For example,
[99] demonstrated that an NN trained in a supervised way with the noninteracting data accurately predicted
all topological phases in the interacting system for a variety of topological insulators in different dimensions
and symmetry classes. The input data in this work was the curvature function’s values at high-symmetry
points in either momentum or momentum-frequency space. A follow-up work [100] showed that a similar
feat is possible when a network is provided with single-particle correlation functions in a noninteracting
regime. We hypothesize that generalizing from no disorder to disordered data is more challenging for deep
networks than from noninteracting to interacting data because the disorder is more likely to trigger the
sensitivity of NNs to adversarial perturbations [101]. On the other hand, [102] presented that when a
network is provided with the entanglement spectrum, it can successfully generalize from weak to strong
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Figure 3. Fidelity between the eigenstate ei for v= 0 and the respective eigenstate ei for different values v/w, showcasing an
example of correlations in data coming from the SSH model that can be used by an NN to predict a label in a simple regime. (a)
Apart from the rapidly changing fidelity expected of the half-filled edge state, we can also observe the changing fidelity of
eigenstates closer to the extremes of the spectrum. (b) Already in the weakly disordered case (W/w= 0.15) fidelity of the states
closer to the extremes of the spectrum becomes a poor predictor of the phases. Only the disorder-robust fidelity of edge states
remains a valid feature. Note: The drop in fidelity of edge states around v/w= 0.08 in panel (a) and rapid oscillations for small
v/w in panel (b) come from the hybrydization of the edge states due to finite-size effects [72].

disorder in the task of classifying topological phases. Their result highlights the advantage of choosing a good
representation of data that allows for better network performance.

To sum up, the networks fail to generalize to the disordered data despite showing stellar performance
both in the training regime and during the in-domain testing. Most CNNs fail even though we provide them
with all the necessary information to carry this performance to the disordered regime, such as the
disorder-robust connection between zero-energy edge states and winding number. Moreover, the physically
motivated remedy only slightly improved the number of well-generalizing networks, while CORAL did it at
the expense of worse performance on disorderless data. To understand these phenomena, we must lift the lid
of the ‘black box’ and ask why CNNs do not generalize well.

3.2. Analysis of the CNNs generalization’s failure
Most successfully trained CNNs failed to generalize from the simple training regime to the disordered
regime. This is especially surprising because there is a robust indicator of the topological phase, namely the
presence of edge states. To understand what other features of the input data are instead leveraged by
networks to make their predictions, we use CAM [70], described in section 2.3.

A large majority of trained networks tend to ignore edge states in the middle of the spectrum as well as
the extremes of the spectrum, that is, the ground state and the highest excited state (maximally filled state).
Instead, they look at the remaining states of the system. We see an example of such a typical network in
figure 2(a). Networks that ignore edge states in the disorderless SSH model usually fail to generalize to the
system with the disorder, as seen in the corresponding predicted phase diagram in figure 2(e). In contrast, a
small number of networks focus more on the edge states in the middle of the spectrum, corresponding to the
half-filled system and constituting the topological invariant of the system. An example of such a network is
shown in figure 2(b), which pays closer attention to the localization at one of the system edges. This group of
networks is more likely to generalize well to the disordered data, see the predicted phase diagram in
figure 2(f), as it detects something related to the known topological invariant. This analysis shows that we
can increase our trust in the OOD generalization of the network by making sure it looks at relevant features
in the known regime of the problem.

The analysis so far showed that networks tend to ignore edge states, but why is this the case? We
hypothesize that features must exist in the bulk that allow a network to solve the learning task in the simple
regime, i.e. that correlate well with the label in the simple regime. Prompted by this analysis, we compare
each eigenstate of the SSH model for intracell tunneling v= 0 to its respective eigenstate for different
intracell tunneling values. We plot the described fidelity of the pair of eigenstates in figure 3(a). As expected,
we see that the fidelity of the edge states at v= 0 and their counterparts for different v/w changes rapidly
throughout the phase diagram. However, we observe that the fidelity of the bulk states also changes across
v/w and, as such, can be used by a CNN to predict a label in the system without disorder. It is only an
example of a possible feature, and there can be any number of more complex ones that the networks pick up
from the data. Importantly, they no longer correlate with the label in the disordered system, as seen in
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figure 3(b). For this reason, we consider them to be spurious correlations in the task of distinguishing between
the topological and topologically trivial phases.

Apparently, in this task, CNNs tend to learn some combination of features related to numerous non-edge
states, even if they are weakly correlated with the label when taken separately. This observation echoes the
results of the ML community on the inherent trade-off of classifiers between the accuracy and robustness.
Tsipras et al [103] showed rigorously on a simple example that classifiers learn a combination of weakly
correlated features to achieve perfect accuracy, instead of relying on a single strongly correlated feature that is
also present in the data but does not allow for perfect accuracy. When disorder enters the data, it can easily
distort the combination of weakly correlated features, harming robustness of a classifier. A solution to
achieving robust NNs is adversarial training [101], which is reminiscent of the original solution from [34],
which used a domain adversarial NN. In our data distribution, though, the single feature (edge states) should
be perfectly correlated with the label (up to finite-size effects), so the task of maximizing accuracy should not
lead to ignoring this feature. We do not know what causes CNNs to favor the combination of weak
correlators over the single predictive feature, but we have two hypotheses. First, the preference towards
multiple features may be due to regularization that prevents NNs from relying on single features. Second, it
may come from the iterative nature of the training, which causes multiple features with weak correlation to
have an increasingly strong training signal as they boost each other.

3.3. Unsupervised analysis of OOD generalizations of NNs
In the previous section, we have described how CAM guided us into understanding that the majority of
CNNs learn some spurious combination of weakly correlated features (related to non-edge states) instead of
a single strong feature (related to edge states). An appropriate combination of weakly correlated features
allows for perfect accuracy in the simple regime but ceases to correlate with the label in the disordered
regime. The same CAM analysis can be used to assess the OOD generalization of CNNs without access to the
labels. For example, if a CNN focuses on the edge state, this increases the chance of a better OOD
generalization of the model.

Although, overall, CAM is useful and can be used as the first step of the generalization study, we have
found that the CAM analysis is unfortunately inconclusive and can only indicate CNN OOD generalization
tendencies. In particular, not every CNN that pays attention to the edge states exhibits good OOD
generalization—evidence for this is in panels (c) and (g) of figure 2. We even find an opposite example where
the CNN that does not put special focus on edge states achieves great OOD accuracy, as seen in panels (d)
and (h) of figure 2. We share the CAM results for all 100 trained CNNs for all test data online [104] for the
reader interested in various possible behaviors of the discussed CNNs. The reliability of CAM as the method
to assess the generalization could be improved if used on the test data from the disordered SSH model.
However, this would bring this explanation method into a noisy regime where CAM is known to be fragile
and unreliable. We advise the reader against using this explanation method in the presence of noise and
elaborate on this topic in appendix F.

As a second technique to validate the OOD generalization of a network, we propose to study the structure
of data representation learned by trained CNNs. When an NN processes an input sample, it generates
different activations at every network layer. We want to understand the relation between the activations
generated by data without the disorder and those generated by the disordered data. We follow here the logic
that the data the network views as similar should generate similar activations or, in other words, should have
similar learned representations [95]. If an NN sees any meaningful relation between the training data
without the disorder and the OOD test data with the disorder, their representations should be somewhat
similar. Such a result increases our trust in the OOD prediction made by a network.

The space of CNN activations is high-dimensional. In the case of a fully connected layer, the dimension
depends on the number of neurons. In the case of a convolutional layer, the dimension is equal to the size of
the convolved data point. To study the relation between points in such a high-dimensional space, we apply
dimensionality reduction techniques that can bring the space dimension down to, e.g. two while preserving
some structure of the original data. We use here PCA, explained in section 2.4. To verify the results, we also
used uniform manifold approximation and projection (UMAP), which is a non-linear dimensionality
reduction technique. We discuss obtained results in appendix H.

We study the representation of the data learned by the penultimate layer of CNN, that is, the neuron
activations after applying the GAP and before entering the last fully connected layer, with the softmax
function, which plays the role of a classifier. To this end, in figure 4 we present the clustering obtained with
PCA for data with different disorder strengths in the two-dimensional versions of the high-dimensional
representation space of the penultimate CNN layer. The dimensionality reduction is applied to the
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Figure 4. Two-dimensional representation of the data learned by the penultimate layer of a poorly- and well-generalizing CNN
with inconclusive CAM results from figure 2, obtained with PCA. (a) The well-generalizing CNN, which according to CAM
ignores the edge states, learned the representation in which the disorderless data (first column) are clustered in two well-separated
clusters corresponding to two phases. Data with increasing disorder falls firstly in the same two clusters formed by disorderless
data, and then slowly separates from them but keeps a weak connection. (b) The representation of test data learned by the
poorly-generalizing CNN, which according to CAM pays close attention to the edge states, already for disorderless data (first
column) lacks well-defined two clusters. The data with disorder, forms more and more separated third cluster, only weakly
connected to one of the clusters of disorderless data. Insets represent labels obtained with the infinite-system approximation of
the winding number. The first two PCs explain together 100% of the data variance.

activations generated by all test data simultaneously, but we plot data subsets for differentW/w’s in separate
subplots to make the analysis clearer. We exclude test data without disorder coming from the vicinity of the
transition (v/w ∈ [0.9;1.1]) to further simplify the analysis.

Let us first focus on the data representation learned by the penultimate layer of a well-generalizing CNN
in figure 4(a). The first thing to notice is the representation of the disorderless data (first column) that relies
on two well-separated clusters corresponding to two phases (light orange is trivial, light blue is topological).
In the next columns, we plot both the disorderless data and the data with increasing disorder strength
(indicated with darker orange and blue). For small and intermediate disorder (W/w= 0.15 and 0.5), the
disordered data are represented very similarly to the data without disorder, in other words, their
representation overlaps. With increasing disorder (W/w= 2 and more), the data start to disconnect from the
original clusters. Interestingly, the topological data with disorder separate faster from the disorderless data
than the data from the topologically trivial phase. Finally, only for large disorder the data form a separate
third cluster. This means that the network has a disjointed representation only of strongly disordered data.

In contrast, the data representation learned by poorly-generalizing CNNs already at the level of
disorderless data do not form two well-defined clusters corresponding to two phases. Especially the
topological data without disorder form quite a disconnected cluster, as seen with PCA in figure 4(b). The
data with disorder ofW/w= 0.5 (third column) is already separate from the original clusters. For strong
disorders, data form three or four separate clusters in the representation space of the penultimate layer. This
suggests that the network does not see continuity in the data as a function of the disorder strength.

Notably, the two CNNs whose learned data representations we studied above are the same CNNs whose
CAM analysis rendered inconclusive results. That is, the well-generalizing CNN is the one from figures 2(d)
and (h) that focuses less on edge states. The poorly-generalizing CNN is the one from figures 2(c) and (g)
that focuses prominently on edge states. This shows that data representation analysis together with CAM can
make stronger statements about the OOD generalization of trained networks.

Finally, we make an analogous analysis for data representation across layers of the well- and
poorly-generalizing CNNs in appendix H, this time with UMAP. It renders the same conclusions as PCA.
However, we make an additional interesting observation that UMAP performed on the input data with and
without disorder does a better job in forming clusters corresponding to topological and trivial phases than a
majority of CNNs trained in a supervised way on data without disorder. The success of UMAP, in light of
CNN’s failures, highlights the power of unsupervised data analysis and the development of a useful data
representation as the first step of an ML pipeline.
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4. Conclusion and outlook

In this work, we have presented how to increase the trust in predictions of an NN when the predictions are
made on data from a different distribution than the NN’s training data distribution and without access to
ground-truth labels. Such an OOD generalization is a desired property of a robust and reliable network and
is difficult to achieve or validate. We have shown how one can study the network to understand the way it
processes the data with two different tools. The first is an interpretability technique that highlights parts of
the data that were important to the network classification decision, called CAM. The second is an analysis of
the data representation learned by the network, facilitated by the dimensionality reduction techniques, such
as PCA, applied to the representation space of the network. The data we have tackled are eigenstates of the
SSH Hamiltonian, coming from two regimes: with and without disorder. We trained hundreds of CNNs on
the data without disorder and checked their in-distribution and OOD generalization to data without and
with disorder, respectively. We have made the following observations.

• An overwhelming majority (95%) of successfully trained CNNs failed to generalize to data with disorder.
This behavior seems to be tied to convolutional layers because it is shared across various CNN architectures
and ResNets, which contain convolutional layers. Expanding the training set with data with slight disorder
(W/w⩽ 0.05) decreased the number of poorly-generalizing CNNs only slightly (78%). While the CORAL
domain adaptation method significantly improves CNN performance on disordered data, it does so at the
cost of lower performance in the disorderless regime.

• The reason CNNs tend to fail is that they focus on non-generalizable features of data that are nevertheless
useful for the training task, as indicated by the CAM analysis of CNNs’ predictions. For example, eigen-
vectors other than the edge states carry correlations that can be leveraged to classify phases in the disorderless
data regime, but they disappear when disorder is added.

• CAM analysis can be used to assert our trust in network prediction. If in the disorderless regime a network
pays attention to edge states, which are known to be useful features, such a network tends to exhibit a better
OOD generalization. Surprisingly, such networks can still fail to generalize to disordered data, making the
CAM analysis inconclusive.

• Moreover, CAM itself is also a fragile interpretation technique that performs poorly in the presence of noise,
which prevented its use to understand the network predictions in the disordered regime.

• Dimensionality reduction techniques such as PCA can be used to visualize the data representation learned by
networks. If a CNNhas a disconnected (very different) representation of disordered data with no connection
to the disorderless training data, the trust in its predictions on the disordered data should be limited. A
good predictor of the OOD generalization quality is instead when a CNN represents the data with slight
disorder similarly to its disorderless training data and then the representation gets smoothly disconnected
with increasing disorder strength.

We conclude that, together, CAM and data representation analysis serve as useful tools to gain additional
insight and assess trust in NN predictions. Given their low cost, we believe that their routine use can only
benefit members of the scientific community who have already added deep learning to their computational
toolbox. The described predictors of the good OOD generalization can, in principle, guide an NN
architecture selection by rejecting architectures that do not exhibit expected positive behaviors, such as a
similar representation of data without and with a small disorder. Such an analysis of NNs is especially needed
in light of our surprising observations that CNNs fail in a relatively simple task that is generalizing to slight
disorder when trained on the disorderless SSH model, whereas physicists know that there exists a robust
feature to solve this task, such as the presence of edge states. This observation also highlights that scientific
data sets create new challenges for deep learning [105, 106] which can unravel unexpected behaviors and
failure modes of NNs. An interesting development would be to understand why deep networks prefer many
features that are weakly correlated with the label over a single strongly correlated feature, even when focusing
on a single feature does not come at the cost of accuracy as in our work, in contrast to the setting studied in
[103]. Another interesting direction would be to study the OOD generalization of simple transformers in this
setting, as their attention layer would remain interpretable also in the disordered regime, contrary to CAM,
possibly containing much better predictors for good OOD generalization in the absence of labels. At the
same time, the community needs to develop more robust tools to assess NN performance in regimes without
known ground truths, bearing in mind that some of them fail in the presence of random or adversarial noise.
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Appendix A. Alternate SSHmodel formulations

The basic formulations of the SSH model [107] we consider is discussed by Asboth et al [72]:

Ĥ= v
N∑

m=1

|m⟩⟨m| ⊗ σ̂x +w
N−1∑
m=1

(
|m+ 1⟩⟨m| ⊗

σ̂x + i σ̂y

2
+ h.c.

)
. (A1)

In ĉ(†)i =
(
ĉ(†)A,i , ĉ

(†)
B,i

)
operators formulation it is,

Ĥ= v
N∑

n=1

ĉ†nσ̂xĉn +w
N−1∑
n=1

(
ĉ†n
σ̂x + i σ̂y

2
ĉn+1 + h.c.

)
. (A2)

Other works we used for comparison of our results formulate it differently:

1. Mondragon et al [73]:

ĤSSH =
∑
n

{
mnĉ

†
nσ̂yĉn + tn

(
ĉ†n
σ̂x + i σ̂y

2
ĉn+1 + h.c.

)}
, (A3)
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Figure 5. Difference between SSH formulations from [73] and [74] is due to different sublattice order, as seen in panels (a) and
(b), respectively. Both define distance within unit cell d1 = 0, and distance between unit cells as d2 = 1. Clarification of this choice
is needed for the further transition to momentum space, as the ordering of A and B sites in each unit cell is swapped.

2. Meier et al [74]:

ĤSSH =
∑
n

{
mnĉ

†
nσ̂xĉn + tn

(
ĉ†n+1

σ̂x − i σ̂y

2
ĉn + h.c.

)}
, (A4)

3. Le et al [75]:

ĤSSH =
∑

j,σ=A,B

{
−J
[
1+(−1)j∆t

]
ĉ†j+1,σ ĉj,σ + h.c.

}
. (A5)

Equations drawn from [73] and [74], allow for the presence of disorder in the system through tn andmn

tunneling amplitudes, corresponding to the same inter- or intra- cell tunneling as w and v. The
correspondence is:

• Intercell tunneling w→ tn,
• Intracell tunneling v→ mn.

The sign discrepancy between models from [73] and [74] in the intercell part is due to the different site
numeration. The former uses BABABA . . . convention, and the latter uses ABABAB . . . convention, which is
the one we use. The difference is seen in figure 5. Another difference we note is that in [73], the intracell
tunneling amplitudes are purely imaginarymn, while in [74], they are purely realmn. Both yield the same
results as long as one convention is kept. In this work, we opt for real tunneling amplitudes.

Appendix B. Calculation of winding number

Calculation demonstration. The routine we employ for the calculation of the winding number [76] involves
several steps. This section is to serve as a step-by-step demonstration. It is accompanied by a mirror Jupyter
Notebook in our GitHub repository [104].

Demonstration parameters. In order to keep the calculations tractable, we choose system size to be 6 sites (3
unit cells). We set the boundary conditions to periodic. We generate the occupational basis, and sort it
lexicographically.

Winding number formula.We want to use here the equation for the winding number in the form [76]:

ϑ=
1

2π i

˛
BZ
Tr
(
h−1∂kh

)
. (B1)

It is defined as a 1st Brillouin zone integral of a transformed momentum space Hamiltonian. In the following
sections we will derive it, starting from Hamiltonian definition presented in equation (1).

Occupational basis Hamiltonian. First we define the Hamiltonian in the occupational basis according to
equation (1). In matrix form it is,

Hocc =



0 v 0 0 0 w
v 0 w 0 0 0
0 w 0 v 0 0
0 0 v 0 w 0
0 0 0 w 0 v
w 0 0 0 v 0

 . (B2)
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Momentum basis Hamiltonian. The winding number is defined as a 1st Brillouin zone integral, so we must
transfer the Hamiltonian to momentum space. The condition to be met here is that a fermion only
accumulates phase when crossing between the neighboring Brillouin zones. Given our choice of boundary
conditions, this is achieved by addition of eik multiplication to the corner terms. These are the terms
corresponding to transitioning the periodic boundary. The resulting Hamiltonian is

Hk
occ =



0 v 0 0 0 weik

v 0 w 0 0 0
0 w 0 v 0 0
0 0 v 0 w 0
0 0 0 w 0 v

weik 0 0 0 v 0

 . (B3)

Chiral symmetry operator. The next step is to define the chiral symmetry operator Γ. In this system it has
the form

Γ =



1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

 . (B4)

Hamiltonian in chiral symmetry basis.We need to rewrite our Hamiltonian in the eigenbasis of Γ. To this
end, we must ensure the eigenvectors of Γ are also sorted lexicographically. The resulting change-of-basis
matrices χ,χ† have the form

χ =



0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0

 , χ† =



0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

 . (B5)

Once we apply them to the Hamiltonian H it becomes block off-diagonal,

H= χHk
occχ

† =



0 0 0 v 0 we−ik

0 0 0 w v 0
0 0 0 0 w v
v w 0 0 0 0
0 v w 0 0 0

weik 0 v 0 0 0

=

[
0 h†

h 0

]
. (B6)

Final calculation. Now the elements we need for the calculations according to equation (B1) have the form:

h=

 v w 0
0 v w

weik 0 v

 , h−1 =
1

v3 +w3eik

 v2 −vw w2

w2eik v2 −vw
−vweik w2eik v2

 , ∂kh=

 0 0 0
0 0 0

iweik 0 0

 ,

h−1∂kh=
ieik

v3 +w3eik

 w2 0 0
−vw 0 0
v2 0 0

 , tr
[
h−1∂kh

]
=

iw2eik

v3 +w3eik
.
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Figure 6. Phase transition vs disorder strength. Comparison of winding number computed for different disorder amplitudes
W/w, averaged over Nr = 25 realizations of disorder. With increased disorder, the phase transition point shifts to v/w ⩾ 1, as
discussed in section 2.1. Use of infinite system calculation is visible by the position of phase transition point, computed to happen
at v/w= 1 in disorderless system (W = 0). In a finite system, it would happen for a smaller v/w ratio [72].

We have arrived at the final formula for integration to obtain the winding number. Now, it needs to be
integrated over the 1st Brillouin Zone. Due to software stability reasons, we integrated it numerically for
k ∈ [0,2π − ϵ].

Universality. This calculation of the winding number also applies to the disordered SSH Hamiltonian,
defined by equation (2). The phase transition point then drifts to values of v/w⩾ 1 with an increase of
disorder amplitudeW/w. This is presented in figure 6.

Appendix C. Architectures and hyperparameters

Data point. Single data point supplied to the network is a matrix of squared coefficients of eigenstates of
Hamiltonians defined by equation (1) (represented in a lexicographically sorted occupational basis), (2) and
its corresponding label. Each column is a single normalized eigenstate. The label is the winding number. A
step-by-step demonstration of the calculation of the winding number is presented in appendix B.

Basic training parameters. All throughout this work we keep the intercell tunneling amplitude w= 1. The
two phases of the SSH system are probed by varying v/w ∈ (0,2). In all data sets (training, validation, test)
both phases are equally numerous – 50% of all data points represent each phase. To ensure linear
independence of data in all three sets, the intervals of v/w were chosen with a slightly offset initial point. That
is 0.001,0.002,0.003 for training, validation, and test set, respectively. This ensures they all represent distinct
points in the phase diagram, and that in disorderless setting they belong to the same distribution.

Data set composition. A part of what we would like to achieve is for the network to learn the correct phase
transition point by itself. Therefore, the training and validation data sets do not contain data from the direct
vicinity of the phase transition. In these two sets, we vary the parameter v in the range
v/w ∈ (0,0.8)∪ (1.2,2). The composition of disorderless data sets is presented in the left column of table 2.

Training extension—disordered data. The extension that proved fruitful was an addition of disordered data
to the training. In this setting, we included data from low-disorder regimes (W/w ∈ 0.01,0.05) in training
and validation sets. For each disorder amplitude, the data added to the training set remained in 5 : 1 ratio to
the disorderless data. For the validation set, the ratio was set at 4 : 1. The composition of data sets used in
both regimes of training are presented in table 2.

Generalization assessment. To assess the networks’ generalization, we tasked it with recreating the
target v vsW phase diagram. To this end, we generated Nr = 25 disorder realizations of the input data and
corresponding labels. We covered the range v/w ∈ [0,2], andW/w ∈ [0,5] for each realization. The step size
in disorder amplitude strength is ∆W/w= 0.1, while the step size in intracell tunneling amplitude is
∆v/w= 0.01. After collecting predictions for all Nr realizations, the values in the generated phase diagram
are then averaged over Nr predicted labels for each pair of (v/w,W/w).
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Table 2. Composition of data sets used in networks’ training. The base setting involved only using data coming from the SSH model in
equation (1). In an extension to this approach, data from disordered SSH model was added, see equation (2).

Approach Disorderless Disordered data

Disorder W = 0 W = 0 W/w= 0.01 W/w= 0.05

Training points 5000 5000 1000 1000
Validation points 1000 1000 250 250

Figure 7. Architecture of the CNN used in this work.

Architecture. The architecture we use is a shallow CNN, as presented in figure 7. It consists of three
convolutional layers with symmetric kernels. The initial convolution filter is of shape (4, 4), followed by
convolutions with (3, 3) kernels. Before the final fully-connected classification layer, we position the GAP
layer in order to accommodate the requirements of the CAM attribution technique.

Hyperparameters.We trained the networks using Stochastic Gradient Descent (SGD). We explored various
combinations of learning rate (LR), momentum, weight decay, and batch size. The range of LRs we evaluated
was 10−6 − 100. The tested batch sizes were 64 and 500. The hyperparameters we picked for training were:
LR= 10−4, momentum= 0.1, weight decay= 0.1, batch size= 64. The networks were trained for up to 500
epochs, with early stopping allowed after 10 consecutive epochs of validation loss rise, with warm-up of 50
epochs.

Appendix D. Comparison with other architectures

Aim of the comparison. In section 3.1, we demonstrate that that CNNs fail in a relatively simple task, with a
known solution, that is generalizing to slight disorder when trained on the disorderless SSH model. There,
we tested this claim with a small CNN (O(103) parameters) presented in figure 7, which we used throughout
the manuscript’s main body. Here, we test this claim with four larger networks of the following types:
convolution-based, i.e. a deeper CNN and ResNet-type architecture, as well as generalized linear and
fully-connected NNs.

HyperparametersWe train 100 randomly initialized networks for each architecture. We present architectures
of the deeper CNN, generalized linear NN, and fully-connected NN in figures 8(a)–(c), respectively. The used
ResNet architecture is an adaptation of ResNet18 [108] with layer ‘conv5’ omitted due to our input size being
smaller than the ImageNet one. For CNN, ResNet, and the linear network, we use the same hyperparameters
as described in appendix C. The only exception is a fully-connected NN, where we increase the LR to 10−3.

Fully-connected and linear networks outperform convolutions.We present the comparison results in
table 3. The fully-connected and generalized linear networks exhibit excellent OOD accuracy on the phase
diagram of the disordered SSH model, when trained only on the disorderless data. All trained instances
perform perfectly in the disorderless regime and accurately predict the whole phase diagram (∼82%), on par
with the best CNNs. Additionally, contrary to the CNNs, their good OOD performance is a general trend,
not a stochastic property. The convolution-based architectures pale in comparison—the ResNet learns
perfectly the disorderless regime, but consistently fails to classify correctly the whole phase diagram (all 100
trained networks fall into the poorly-generalizing group). The deeper CNN outperforms its shallower
counterpart with as much as 41% of the networks generalizing well. However, increased depth comes at the
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Table 3. Statistics (means± standard deviations) of four classes of 100 randomly initialized networks trained only on data without
disorder,W = 0. The compared architectures are presented in figure 8.

Deep CNN ResNet Generalized Linear NN Fully-connected NN

Number of
parameters

42 306 2 868 162 5 002 1 364 434

OOD
generalization

Good Poor Poor Good Good

Number of CNNs 41 / 100 59 / 100 100 / 100 100 / 100 100 / 100

Training accuracy ∼100% ∼100% ∼100% ∼100% ∼100%
Validation
accuracy

∼100% ∼100% ∼100% ∼100% ∼100%

Test accuracy 94.9± 2.1% 94.1± 1.9% 93.81± 0.34% ∼ 93% ∼94%
OOD accuracy 86.6± 3.3% 71± 6% 50.29± 0.30% 81.396± 0.020% 82.51± 0.04%
RMSE 0.143± 0.033 0.30± 0.06 0.5078± 0.0033 0.1839± 0.0004 0.1692± 0.0007

Figure 8. Tested alternative architectures. (a) This CNN is of the same type as presented in figure 7 but has an increased depth. (b)
A deep fully-connected NN. (c) The generalized linear NN. Here, the softmax layer only acts as an output normalization, allowing
to interpret it as class probabilities.

cost of a 40-fold increase in the number of trainable parameters, and the deeper CNN still underperforms
compared to the two fully-connected networks.

Convolutions, edge states, and disorder-induced localization. The comparison between architectures shows
that generally networks with convolutional layers struggle with the task of classifying phases of the disordered
SSH model, when trained only on disorderless data. This might be because the physically meaningful
discriminative features—the zero-energy edge states—always appear in the same pixels of the input image. If
not for their position, they can be confused with disorder-induced localization of particles. Convolutional
networks are translationally invariant, so they cannot immediately leverage the knowledge of the localization
position in the image, contrary to fully-connected networks, which may use the information about the
position directly. Convolutional networks need to learn a more subtle representation of the localization to
carry out the classification task successfully, which proves to be a challenging and non-deterministic task.

Appendix E. CORAL for architecture-agnostic domain adaptation

CORAL as a way for domain adaptation. CORAL stands for CORrelation ALignment domain adaptation
method [109–111]. It aims to align network representations of in- and OOD data by matching their

16



Mach. Learn.: Sci. Technol. 6 (2025) 015014 K Cybiński et al

Table 4. Statistics (means± standard deviations) of 100 randomly initialized networks trained on disorderless data with CORAL loss
added either from the beginning or only when ACC on training and validation dataset exceeded 95%. The addition of CORAL to
training drastically worsened the performance on the disorderless test datasets. The table also displays the number of well- and
poorly-generalizing networks that meet the necessary condition of good performance (ACC> 90%) on the disorderless test dataset.
Their performance statistics are displayed in table 5.

CNNs trained with
CORAL from the start

CNNs trained with CORAL
from training ACC> 95%

OOD generalization Well-generalizing Poorly-generalizing Well-generalizing Poorly-generalizing
Number of CNNs 14 / 100 86 / 100 43 / 100 57 / 100

Training accuracy ∼100% ∼100% ∼100% ∼100%
Validation accuracy 75± 25% 59± 18% 93± 14% 67± 22%
Test accuracy 73± 23% 58± 16% 87± 13% 64± 19%
OOD accuracy 84.0± 2.0% 64± 9% 87.5± 3.5% 68± 9%
RMSE 0.165± 0.021 0.36± 0.09 0.14± 0.04 0.34± 0.10

Number of CNNs
(ACC> 90%)

6 / 14 8 / 86 26 / 43 13 / 57

Percentage of group
(ACC> 90%)

43% 9% 60% 23%

second-order statistics. In the case of a linear classifier, it can be done analytically [110]. A visually appealing
explanation of the linear version of this method can be seen in figure 2 of [110].

CORAL in NNs.When applied to an NN, CORAL consists of adding to the training loss function a term
describing the distance between covariance matrices of activations of training and OOD data [111]:

ℓCORAL =
1

4d2
∥Ctrain −COOD∥2F , (E1)

where d is the number of channels in the output of an NN layer, ∥·∥F is the Frobenius norm, and Ctrain and
COOD are covariance matrices of activations of training and OOD data, as defined in equations (2) and (3) of
[111]. These activations can be studied at different network layers or at many t layers simultaneously, each
weighted by a hyperparameter λi. Then, the total loss is a sum of the classification loss and CORAL terms
coming from different layers as defined by equation (E2).

ℓ= ℓclass. +
t∑

i=1

λi ℓCORAL . (E2)

Implementation details.We test two approaches to incorporate CORAL into the training routine. The first
one is to train the network from scratch with the loss function defined by equation (E2), and the second is
only to add the CORAL term to the classification loss when the training and validation accuracies surpass
95%. The second approach serves as a way of fine-tuning architectures already leaning towards a
classification loss minimum. As per [111], we choose the value of λ so that at the end of the training, the
ℓclass. and

∑t
i=1λi ℓCORAM reach an equilibrium and their values are ‘roughly the same’. Following [111], we

apply ℓCORAL to only one layer, i.e. the last convolution before GAP. Note that the OOD data used for the
CORAL is unlabeled and sampled across the whole target phase diagram, where for every value of
W/w ∈ [0,5]20 randomly chosen samples from each class were picked.

CORAL worsens the disorderless test accuracy. In both cases, the test accuracy on disorderless data drops
significantly, with the vast majority of trained networks performing under 90% disorderless test accuracy. To
mitigate the effect, several λ values were tested. When λ is large,O(10), the optimization process focuses only
on aligning representations, completely neglecting the classification loss. On the other hand, when λ is small,
O(10−5), CNNs heavily overfit the disorderless training data. We report the results for intermediate λ of
O(10−2) in table 4. Most CNNs (86%) still severely overfit (with test accuracy below 60%), but gain slightly
better OOD accuracy (≈64%). Finally, of the networks that perform well on the disorderless dataset, the
good generalization is encountered more often, as presented in table 5. Therefore, CORAL improves CNN
performance on disordered data, but usually at the cost of lower performance in the disorderless regime.
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Table 5. Statistics (means± standard deviations) of the networks that meet the necessary condition of good performance (ACC> 90%)
on the disorderless test dataset out of 100 random initializations. The networks were trained on disorderless data with CORAL loss
added from the beginning or only when ACC on the training and validation dataset exceeded 95%.

CNNs trained with
CORAL from the start

CNNs trained with CORAL
from training ACC> 95%

OOD generalization Well-generalizing Poorly-generalizing Well-generalizing Poorly-generalizing
Number of CNNs 6 / 14 8 / 14 26 / 43 13 / 43

Training accuracy ∼100% ∼100% ∼100% ∼100%
Validation accuracy ∼100% ∼100% ∼100% ∼100%
Test accuracy 95.7± 3.0% 97.8± 2.2% 95.2± 3.2% 95.0± 2.4%
OOD accuracy 85.0± 2.1% 75± 6% 88.7± 2.8% 71± 8%
RMSE 0.157± 0.020 0.27± 0.06 0.130± 0.033 0.34± 0.09

Figure 9. Class activation mapping (CAM) generates a map that highlights relevant parts of the input data for predicting a
selected class C (out of NC classes), e.g. a pug out of all 1000 ImageNet categories. In the final convolutional layer of the network,
each of the Nch channels generates a convolved image, Ak (three out of Nch are marked with blue, red, and green squares in the
figure). Each activation can encode some data features relevant to some of the classes. An intuitive example of such features could
be the shortened snout of a pug or cat’s whiskers. The GAP layer then reduces each of these activations to its mean value (e.g. each
colored square got reduced to the scalar of the same color). Finally, the fully-connected layer maps GAP values to the network
outputs and its weights are used as weights for the CAM. Inspired by [70].

Appendix F. Gradient-based interpretability techniques are fragile

Introduction to CAM. CAM is an attribution technique tailored for use with CNNs and leverages their
design. A CNN produces different representations of the input data during a forward pass through the
network and encodes them in different channels. CAM relies on the latent representation of the data present
in the Nch output channels of the last convolutional layer in a network (activations Ak), by performing their
weighted sum with weights αk [84],

CAMC (A) = ReLU

(
Nch∑
k=1

αkAk

)
. (F1)

The resulting map, after rescaling back to the original data size, highlights the areas that were the most
influential in predicting a considered class C. The crucial part is the choice of the weights αk. The original
formulation of the method relies on reducing each channel output of the last convolutional layer to a single
number with GAP layer [70]. The weights of fully-connected layer connecting those numbers with the
output corresponding to the considered class C are then used as αk for the weighted average of convolved
images. We present this explanation graphically in figure 9.

CAM fails for the disordered regime. As discussed before, CAM provides invaluable insight into possible
correlations in disorderless data. However, the results proved unreliable when applied to data from a
disordered regime (W/w⩽ 0.05). Contrary to the previously observed and expected tendencies, CAM
importance maps were asymmetric and varied significantly between neighboring v values and multiple
realizations of the same point in phase space. This example is presented in figures 10(c) and (d).

NN’s fragility. The CNNs have been shown to be prone to ‘adversarial noise’ attacks [114, 115]. They can
take various intricate forms, as discussed by [116]. The simplest scenario of an adversarial noise attack is one
where the input image is perturbed in a deliberately engineered way to fool the CNN and make it predict a
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Figure 10. Interpretation fragility. (a) Gradient-based attribution techniques (CAM included) rely on the direction of the gradient
(pink arrow), so small perturbation dx of a test image can vary the basis of explanation, leaving class prediction unaffected. Panel
inspired by [112]. (b) Thermometer encoding, a solution to this problem proposed by Buckman et al [113], is a discretization
technique for encoding a floating point input variable as a vector representing its magnitude. Reproduced from [113]. CC BY 4.0.
(d) In a disordered regime, CAM yields flawed interpretations. (c) The input is axially symmetric—a property that the
interpretation should preserve. (e) This is remedied by using thermometer encoding at the cost of limited network performance
and a rise in computational cost.

different class while keeping the input visually indistinguishable for a human. This class of attacks targets the
predictive power of CNN. However, the problem in our case is the more subtle—predictions remain factual,
and the gradient-based interpretation fails.

Interpretation fragility. The topic of attacks on interpretation alone has already been addressed by the
computer science community [112, 117, 118]. The intuition provided by [112] is as follows. Gradient-based
techniques, like CAM, rely on the direction one must go from any given test example to the decision
boundary. This is the geometric interpretation of the gradient in parameter space. The decision boundary,
being highly non-convex, makes it very easy to perturb a given test image while still within the boundaries of
its class. This slight shift is enough for the gradient vector to point in another direction, producing a different
interpretation. See figure 10(a).

Thermometer encoding. Buckman et al [113] have proposed using thermometer encoding of input to
remedy this problem. It belongs to a broader class of approaches to reducing problem complexity via casting
input with floating point entries to discrete variables. A standard input discretization technique, one-hot
encoding, encodes a quantized floating point number as a vector with the only non-zero entry marking the
range in which it falls. [113] argues that by mimicking the behavior of a mercury thermometer, encoding the
magnitude of the encoded input, the network gradients are better behaved. This change, they argue, reduces
the fragility of gradient-based network attribution techniques. The thermometer encoding process is
demonstrated in figure 10(b).

Thermometer recovers CAM.We have implemented thermometer encoding with the number of
discretization bins ranging from 10 to 100 to test its applicability to our problem. We have successfully
recovered the insight provided by CAM, as displayed in figure 10(e). We have found the 100 discretization
bins to be the optimal value for the problem. This technique retrieves CAM interpretation for all disorders in
the range addressed by this study.

Cost of CAM interpretability.While gradient-based interpretation is recovered, there is collateral damage
done to network performance and training costs. None out of 100 networks trained using this thermometer
encoding generalized well to data with disorder, even when trained on data with added small disorder
W/w ∈ 0,0.01,0.05. This is a significant performance loss when compared to 22% of well-generalizing
networks obtained when the architecture is not adjusted to the thermometer encoding. There is also a
substantial rise in the computational cost of network training. For 100 discretization bins, the number of
trainable parameters rises fromO(103) toO(109). This, in turn, extended the training time of a single
network fromO(1min) toO(2h). The training was performed in PyTorch [78] on a CUDA-enabled
NVIDIA GeForce GTX 1050 graphics card with 4GB ofGDDR5VRAM.

19

https://creativecommons.org/licenses/by/4.0/


Mach. Learn.: Sci. Technol. 6 (2025) 015014 K Cybiński et al

Figure 11. CAM analysis of a network trained and tested in a simplified setting. All entries in data points are drawn from the
uniform distribution U[0,0.1]. In half of the data, we set the edge entries of two middle columns to 1. This constitutes a
‘Topological’ phase, with the second part labeled ‘Trivial’ phase. CAM analysis of this setting confirms that the features the
network uses for class discrimination are the bright pixels.

Appendix G. Toymodel for CAM performance assessment

The motivation behind our use of CAM can be demonstrated using a toy model of the problem at hand,
imitating the SSH model with a slight disorder. In this setting, we create an artificial data set consisting of
data points, where all entries are drawn from the uniform distribution U[0,0.1]. We then separate it into two
parts and set the edge entries of two middle columns to 1. In this setting, the phases are not distinguished by
any correlations other than the two bright pixels we set. CAM analysis of a network trained and tested in this
setting shows that the features the network uses for class discrimination are the bright pixels. This result is
shown in figure 11.

Appendix H. Evolution of the data representation across layers of a NN

Representation varies between network layers.We can also study the evolution of the data representation
across layers, which gives additional insights into the behavior of different networks. To this end, we now
investigate outputs of the three consecutive convolutional layers (Conv1, Conv2, Conv3), next to the output
of the GAP layer, which we have studied in the main text in figure 4. Contrary to the discussion in the main
text, here we do not remove the data from the vicinity of the transition point. We also inspect the respective
representation of the test data without disorder and OOD test data with a single realization of multiple
disorder amplitudes (W/w ∈ 0.15,0.5,1,2). However, not all data sets can be visualized accurately in a few
dimensions using only linear transformations. Therefore, we chose a nonlinear technique to visualize the
underlying structure of the latent space representations in the CNNs more accurately than PCA, described in
section 2.4. To this end, we use the UMAP [119].

UMAP—nonlinear dimensionality reduction. As demonstrated in [120], UMAP is a two-step routine: first,
it computes a graph that represents the data and then learns a low-dimensional representation of the graph
while trying to preserve the local, global, and topological structure of the data. UMAP is good at visualizing
high-dimensional nonlinear data sets, but it has some drawbacks. First, the embedding learning process is
stochastic, which means that the reproducibility of the results is limited. Second, it can distort the true nature
of data connectivity and density [121–123], so it is essential to be cautious when using it to conclude the
clustering or concentration of data. It is a good practice to verify that the resulting number of clusters agrees
with what we expect to find in the data based on results from other techniques. Despite its limitations,
UMAP has proven to be computationally inexpensive and is often used because of its ability to visualize
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Figure 12. Evolution of the internal data representation with UMAP within different layers of the well-generalizing CNN that
does not focus on edge states, as seen figures 2(d) and (h).

high-dimensional data efficiently. These are the reasons behind our decision to use it to analyze the latent
space representations in the CNNs we studied. The UMAP embeddings are visualized in figures 12 and 13 for
well- and poorly-generalizing networks, respectively.

UMAP results for raw data. Analysis of raw data with UMAP (first row of figures 12 and 13) allows for two
interesting observations. Firstly, surprisingly, the UMAP embedding is itself a better classifier of data from
disordered regimes than the majority of CNNs. The embedding of both classes in such data overlaps with the
embeddings of classes from a disorderless system. This could allow for an informed decision about proper
labels in the OOD regime. Secondly, it is a testament to the previously mentioned stochasticity of
low-dimensional representations. The raw data subject to analysis are the same in both figures, but their
embedding is slightly different. This is a result of UMAP’s limited reproducibility. Upon careful inspection,
these UMAP embeddings led to one more observation: that the data coming from the topological class
formed two disjoint clusters. This phenomenon is due to the hybridization of the edge states [72].

Well-generalizing CNNs represent data with and without disorder similarly. Let us first focus on the
two-dimensional data representation generated by UMAP for the well-generalizing network, as seen in
figure 12. In the consecutive columns, we plot the disorderless data and the data with increasing disorder
strength (indicated with darker orange and blue). In the first convolutional layer (Conv1), the disordered
data are represented very similarly to those without the disorder. In other words, their representation
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Figure 13. Evolution of the internal data representation with UMAP within different layers of the poorly-generalizing CNN that
focuses on edge states, as seen figures 2(c) and (g).

overlaps. In the following two layers (Conv2, Conv3), the class representations overlap for intermediate
disorder amplitudes (W/w ∈ 0.5,1. With increasing disorder amplitude (W/w⩾ 2), the embedded data start
to disconnect from the original clusters. In particular, the embedded Conv3 layer activations, which initially
clustered with the topological class, begin forming a class of its own. This may signify a change in the data
structure the network has learned to observe. It also means that at this stage of the forward pass, the network
has a disjointed representation only of strongly disordered data.

The lowest row presents embedded activations from the GAP layer, a qualitatively different picture.
Knowing the nature of GAP output, it seems safe to assume that what we see here is an embedding of a
unidimensional manifold. As disorder increases, the initially disjoint clusters of disorderless data gradually
connect with data from increasingly disordered regimes. This captures well the perceived similarity of both
classes an observer, artificial or human, has when observing the input data.

Poorly-generalizing CNNs have very different representation of data with and without disorder. Let us
now move on to the two-dimensional data representation generated by UMAP for the poorly-generalizing
network, as seen in figure 13. In the first convolutional layer (Conv1), the disordered data are represented
very similarly to those without the disorder. This behaviour is consistent with the one observed for the
well-generalizing network. In the following two layers (Conv2, Conv3), the class representations overlap for
intermediate disorder amplitudes (W/w ∈ 0.5,1. With increasing disorder amplitude (W/w⩾ 2), the
embedded data start to disconnect from the original clusters. Given the poor generalizability we expect from
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this network, it is not surprising to see them merge together, and then finally be positioned near just one of
the initial distributions. The fact that it gets positioned near the topological phase representation might
suggest that this would be the phase predicted in high disorder regime, and this notion turns out to be true
here.

The lowest row of figure 12 is once again a qualitatively different picture from the previous layers, but of
the same nature as embedding of GAP layer activations from well-generalizing network. This further
strengthens the assumption that is an embedding of a unidimensional manifold. Here, however, it is hard to
say surely that the initial clusters of disorderless data are well separated. Their, already low, separation
vanishes as disorder increases. The disordered data then proceed to merge together and position in the range
of topological class. This, once again, correctly suggests that this would be the phase predicted in high
disorder regime.
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