
PHYSICAL REVIEW RESEARCH 7, 013321 (2025)

Tunable two-species spin models with Rydberg atoms in circular and elliptical states
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We propose a scheme for constructing versatile quantum simulators using ultracold Rydberg atoms in long-
lived circular and elliptical states. By exciting different subspaces of internal atomic states, the atoms can be
used to simulate two effective spin species with different spin-spin interactions. The strengths of transverse and
longitudinal spin-spin interactions, both intra- and interspecies, can be controlled within a wide range of values.
This setup can be used to simulate two-species spin models or lattice models with two sublattices. We show
examples of specific models which can be realized.
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I. INTRODUCTION

Quantum simulation allows us to investigate complex
physical models, with an unprecedented level of control and
insight into the system properties. Technological advance-
ments now allow for the construction of quantum simulators
using arrays of ultracold particles trapped in precisely posi-
tioned optical tweezers [1–7]. The study of spin models is a
crucial application of these simulators. Spin model simulators
can be realized by treating internal levels of the particles
as effective “spin” states, with interactions between particles
mapped onto effective “spin interactions.” Previous proposals
for spin model simulators include setups made up of ultracold
polar molecules [8], atoms [9], or their mixtures [10].

Atoms in highly excited Rydberg states are especially
promising for quantum simulations due to their strong,
tunable interactions, including complex anisotropic dipolar
couplings [11,12]. Various studies have explored the use of
Rydberg atom systems for quantum information processing
[13–15], simulation of spin models [16–25], and simulation
of hard-core bosons in a lattice [26]. The simulators based
on Rydberg atoms have possible uses for studying quantum
magnetism [27–29] and topological phases [30–32]. Notably,
a recent paper considers a Rydberg atom array composed of
two different atom species, which can exhibit more varied
interactions than single-species arrays [33]. In addition to the-
oretical proposals, Rydberg atom-based quantum simulators
have seen promising experimental realizations [18,30,34–43].

Among the various Rydberg states, circular states have
attracted considerable attention. Circular states have the max-
imum possible magnetic quantum number (|m�| = � = n − 1,
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where �, n are the azimuthal and principal quantum numbers).
They exhibit notably long lifetimes due to limited radiative
decay pathways. The radiative lifetimes of circular states scale
as n5, and typical circular level lifetimes are on the order of
10−2 s (e.g., 2.5 × 10−2 s for n = 48) [44]. In comparison,
the lifetimes of low-� Rydberg states scale approximately
as n3; for n = 48 they are on the order of 10−4 s [45].
The lifetime of circular states can be further extended by
placing the atoms inside small cavities that do not support
the modes corresponding to their decay wavelengths [46,47].
Techniques for preparing circular Rydberg states are well-
established [48–51], with recent advancements allowing for
precise positioning of these atoms in arrays [52,53]. Very
recently, dipolar interactions between trapped circular atoms
have been observed experimentally [54]. These facts make cir-
cular Rydberg states a promising tool for quantum simulation
[55], and the rapid advancement of experimental techniques
makes circular states a timely subject.

Several proposals have explored practical applications of
circular Rydberg states. For instance, some proposals have
suggested using the entire ladder of Rydberg levels, from low-
� to circular levels, to simulate the states of an arbitrarily large
spin [56,57]. Recently, detailed proposals have been published
for using systems of cold circular Rydberg atoms in quan-
tum simulation [44] and computation [58]. These proposals
use a scheme where the two spin-1/2 states are encoded in
two circular states. This approach typically yields effective
spins with strong spin-exchanging couplings, in contrast with
weaker longitudinal couplings [55].

In this paper, we investigate a different scheme, where the
two spin-1/2 states are encoded as a circular level and an el-
liptical (i.e., |m�| = n − 2) level. This results in effective spins
for which longitudinal spin-spin couplings are much stronger
than spin-exchanging couplings. We evaluate and compare the
interaction strengths in both encoding schemes. Furthermore,
we explore the possibility of combining both schemes to
simulate a “two-species” spin model with tunable inter- and
intraspecies interactions. Such a model can be simulated with
an array of identical atoms, flexibly assigned to either “spin
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species” as desired. This simplifies preparation and allows
the same atom arrangement to simulate systems with various
species populations. We furthermore demonstrate two exam-
ple systems which can be realized in this approach.

We note that elliptical Rydberg states have received less
attention in the literature, being treated mostly as sources
of unwanted couplings of circular states. Our work finds a
practical application for elliptical states, providing an initial
exploration of their potential for new quantum simulation
schemes.

This paper is organized as follows: In Sec. II, we describe a
physical system of ultracold atoms and outline the two distinct
mapping schemes for creating effective spins. In Sec. III,
we analyze the resulting effective spin interactions in these
two distinct spin species. In Sec. IV, we showcase example
models which can be created with this approach. In Sec. V, we
discuss the experimental feasibility of realizing the proposed
two-species setup. Section VI is the conclusion.

II. THE MODEL

A. The physical atomic system

We consider a system of N atoms, modeled as point-
like particles and numbered as j = 1, . . . , N . The atoms are
placed at fixed locations �Rj . The Hamiltonian describing this
system is

Ĥ =
N∑

j=1

ĥ( j) +
N∑

k=1, j<k

V̂ ( j,k), (1)

where ĥ( j) is the one-body Hamiltonian describing the in-
ternal levels of atom j = 1, . . . , N , and V̂ ( j,k) describes the
interaction between atoms j and k. We assume all N atoms
are described by identical one-body Hamiltonians ĥ( j). Ad-
ditionally, we assume the system is made up of alkali-metal
atoms, which are a common choice in cold-atom experiments
and quantum simulators due to their favorable properties.
The exact choice of atomic element is inconsequential, since
circular-state valence electrons feel very little interaction with
the nucleus, and their properties depend only negligibly on the
atomic number.

The system is subjected to a uniform electric field �Edc and
a magnetic field �B, both aligned along the Z axis (i.e., the
quantization axis), of strengths Edc and B, respectively. The
effects of �Edc and �B on the atomic levels are incorporated in
ĥ( j).

Throughout the paper, we assume the magnetic-field
strengths are constrained to below 1000 Gauss, as higher
values are challenging to obtain in ultracold-atoms laboratory
settings. Similarly, the maximum electric-field strength is lim-
ited in practice, because at high-Edc Rydberg atoms undergo
spontaneous ionization. Note that circular states can withstand
higher electric fields compared with low-� states of the same
n. As an example, in Ref. [48], the ionization thresholds for
circular n = 19 Li states were estimated as 6 kV/cm, com-
pared with 4.6 kV/cm for m� = 2 states of same n. Similarly,
Ref. [59] gives the threshold field as ≈125 V/cm for the
n = 51 circular level of Sr, compared with ≈50 V/cm for
low-� states. In our paper, we focus on levels up to n = 73 and,

extrapolating from the data above, we limit the considered
electric fields to 20 V/cm.

B. Internal atomic levels

We use the |n, �, m�〉 basis to describe the internal atomic
levels, where n is the principal quantum number of the valence
electron, � is its angular orbital momentum, and m� is the
projection of � on the quantization axis. As the spin-orbit split-
ting is insignificant for circular states, we can ignore the fine
structure. Circular states are those which have the maximum
possible |m�| = � = n − 1. For alkali-metal atoms, in a given
n manifold one can define two circular states with m� = ±�.
We are also interested in the elliptical states, characterized by
|m�| = n − 2. One can define four elliptical states for given n
[with � = (n − 2) or � = (n − 1), and m� = ±�].

In the zero-field limit, eigenstates of ĥ( j) can be written as
|n, �, m�〉, but states with different m� are degenerate and thus
m� is ill-defined as a quantum number. For higher fields, this
degeneracy is lifted and m� becomes a good quantum number,
even though the eigenstates become superpositions of levels
with different n and �.

Throughout this paper, we define |nC±〉 as the field-
dressed eigenstate of ĥ( j) which approaches the form |n, � =
(n − 1), m� = ±(n − 1)〉 in the small-field limit. Similarly,
we define |nE±〉 as the field-dressed eigenstate of ĥ( j) which
approaches the form |n, � = (n − 2), m� = ±(n − 2)〉 in the
small-field limit. [For the sake of simplicity, we do not con-
sider elliptical states with � = (n − 1).]

For given field strengths Edc, B, we find the compositions
and energies of field-dressed eigenstates by constructing and
numerically diagonalizing the one-body Hamiltonian, using
procedures from the Python library PAIRINTERACTION [60].

C. The interaction term

For simplicity, in the two-body interaction terms V̂ ( j,k) we
only consider electric dipole-dipole interactions. We omit the
higher-order multipole-multipole interactions, which are gen-
erally weaker than dipole interactions by one or more orders
of magnitude [58]. We denote the electric dipole operator
acting on atom j as d̂ ( j). Its components d̂ ( j)

q can be written in
terms of the spherical coordinate system, where basis vectors
are labeled by q = 0,±1: �e0 ≡ �eZ , �e±1 ≡ ∓(�eX ± i�eY )/

√
2.

The dipole-dipole interaction term can then be written suc-
cinctly as follows [61]:

V̂ ( j,k) =
+1∑

q′, q=−1

v
( j,k)
q′;q d̂ ( j)

q′ d̂ (k)
q , (2)

where

v
( j,k)
0;0 = 2v

( j,k)
+1;−1 = 2v

( j,k)
−1;+1 = 1 − 3 cos2 θ jk

4πε0|Rjk|3 ,

v
( j,k)
0;±1 = v

( j,k)
±1;0 = ± 3√

2

sin θ jk cos θ jk

4πε0|Rjk|3 e∓iφ jk ,

v
( j,k)
±1;±1 = −3

2

sin2 θ jk

4πε0|Rjk|3 e∓i2φ jk . (3)
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Here, �Rjk = �Rk − �Rj , i.e., the distance between atoms j and k.
θ jk is the polar angle of �Rjk (cos θ jk = �Rjk · �e0/|Rjk|), and φ jk

is the azimuthal angle of rotation about the �e0 axis (relative to
an arbitrarily chosen X axis).

Per the electric dipole selection rules (��= ±1,�m� = 0,

±1), the dipole operators allow the coupling between neigh-
boring circular levels |nC±〉 ↔ |(n + 1)C±〉. The correspond-
ing transition dipole moments scale as ∼n2ea0 [45]. Similarly,
the couplings |nC±〉 ↔ |nE±〉 and |nC±〉 ↔ |(n + 2)E±〉 are
dipole-allowed, with a matrix element scaling as ∼n3/2ea0

[45]. The coupling |nC±〉 ↔ |(n + 1)E±〉 becomes dipole al-
lowed in an electric field, because the field-dressed level
|(n + 1)E±〉 contains a large admixture of an elliptical state
with � = n; the resulting matrix element likewise scales as
∼n3/2ea0.

D. Choosing the effective spin basis

In quantum simulation of S-spin particles, a common strat-
egy is to encode the 2S + 1 spin states in a particular subspace
of atomic levels. We expand upon this approach by defining
two separate subspaces, which correspond to two distinct
spin species. If we select two subspaces which significantly
differ with regards to transition matrix elements between the
constituent levels, the atoms can effectively represent two
distinct spin species with characteristic inter- and intraspecies
interaction strengths. This scheme allows us to map identical
atoms to nonidentical spin species, simply by preparing them
in the appropriate subspaces. In the following discussion, we
focus on simulating 1/2-spin particles, so that each chosen
subspace will consist of two levels. Extending this scheme to
higher S may be possible, although likely presents additional
complications.

For the first spin species, we choose a pair of neighboring
circular states |nC±〉 and |(n + 1)C±〉. These states can be
mapped, in arbitrary order, to the 1/2-spin states |⇓〉 and
|⇑〉. We label their energies E⇓ and E⇑. This assignment of
states represents the established approach to effective spin
simulation, known from previous literature [44,58].

For the second spin species, we choose a different circular
state |n′C±〉, paired with either |(n′ + 1)E±〉 or |(n′ + 2)E±〉.
The circular and elliptical state can be mapped, also in arbi-
trary order, to the 1/2-spin states |↓〉 and |↑〉, with energies E↓
and E↑.

We refer to these two types of effective spins as the CC
species and the CE species, respectively. For brevity, we use
the term “CC atom” to designate an atom excited into the first
subspace, and similarly for “CE atom.”

Spin-exchanging interactions between different species are
often a desirable part of the system dynamics. The spin ex-
change between CC and CE species depends on the Förster
defect � = (E⇑ − E⇓) − (E↑ − E↓), which expresses the en-
ergy cost of a single exchange. To enable resonant spin
exchange, � should be comparable to, or smaller than, the
spin-exchange matrix element. This can be achieved by tun-
ing the external electric and magnetic fields to minimize �.
Throughout the rest of this paper, whenever analyzing the
system properties in different fields, we consistently adjust
Edc and B together in order to minimize �. For given Edc,

we define Bres as the value of B where the Förster defect is
� = 0. In practice, since realistically the ability to control
B is limited by environmental field fluctuations and other
sources of error, we define Bres only with an accuracy down
to 0.01 Gauss, so � in our calculations has a residual nonzero
value.

Achieving interspecies spin exchange places constrains on
the choice of CC and CE effective spin levels. The values of
n and n′ should be chosen in such a way that the transition
frequencies E⇑ − E⇓ and E↑ − E↓ are similar in zero field and
therefore can be tuned into resonance via small external fields
(on the order of ≈1 V/cm and ≈100 Gauss). For the scheme
n → n + 1, n′ → n′ + 1, the values of n and n′ should there-
fore be similar, while for the scheme n → n + 1, n′ → n′ + 2,
generally one has n′ � n.

Additionally, interspecies spin exchange constrains the as-
signment of the spin level labels: if for species CC we assign
the higher-energy state to ⇑ and the lower-energy state to ⇓,
then for species CE we need to assign ↑,↓ in the same way,
so that the pair states |⇑↓〉 and |⇓↑〉 can have similar total en-
ergy. The sign of m� picked for the two species can be the same
or different. However, picking level pairs with opposite signs
of m�, e.g., |nC−〉, |(n + 1)C−〉 and |n′C+〉, |(n′ + 2)E+〉)
helps ensure that the Zeeman shifts of the transition frequen-
cies have different signs, which makes it easier to match the
transition frequencies. Additionally, the extreme difference
in m� helps to prevent mixing between the two spin state
subspaces.

It is worth noting that the electric field �Edc, acting along
the Z axis, has a different effect on circular and elliptical
states [45]. Specifically, circular states lack a first-order Stark
shift, which is normally caused by mixing to nearby levels
with the same m� and opposite symmetry; a circular state
|nC〉 has no partners with the same m� within the same
n manifold. For this reason, in the relatively small fields
Edc ≈ 1 V/cm that we consider, the energy and composi-
tion of |nC±〉 are only negligibly affected by Edc (only a
weak second-order Stark effect occurs). On the other hand,
the elliptical states |nE±〉 display a much stronger first-order
Stark shift. This will be shown to be particularly relevant for
the effective spin interactions and their tunability via electric
fields.

Finally, we emphasize that a two-species model with in-
terspecies spin exchange cannot be easily realized using only
circular states, i.e., using the subspaces |nC〉 → |(n + 1)C〉
and |n′C〉 → |(n′ + 1)C〉. In this approach, to make the
two species meaningfully different, it is necessary to use
highly different n, n′ (to obtain different interaction strengths).
However, this is precluded by the requirement that transi-
tion frequencies E⇑ − E⇓ and E↑ − E↓ are similar in zero
field.

III. EXAMPLE INTERACTION PARAMETERS

A. Obtaining the effective spin Hamiltonian

Our goal is to recast the physical Hamiltonian of Eq. (1)
into an effective spin Hamiltonian. The most complete form
of this effective Hamiltonian, incorporating all the possible
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one- and two-body spin terms, is

Ĥeff =
⎛
⎝ N∑

j=1

C j
I

⎞
⎠Î +

N∑
j=1

C j
z Ŝ( j)

z

+
N∑

k=1, j<k

[C jk
+−Ŝ( j)

+ Ŝ(k)
− + (C jk

+−)∗Ŝ( j)
− Ŝ(k)

+ ]

+
N∑

k=1, j<k

[C jk
++Ŝ( j)

+ Ŝ(k)
+ + (C jk

++)∗Ŝ( j)
− Ŝ(k)

− ]

+
N∑

j=1

[C j
+Ŝ( j)

+ + (C j
+)∗Ŝ( j)

− ]

+
N∑

j �=k=1

[
C jk

+zŜ
( j)
+ Ŝ(k)

z + (
C jk

+z

)∗
Ŝ( j)

− Ŝ(k)
z

]

+
N∑

k=1, j<k

C jk
zz Ŝ( j)

z Ŝ(k)
z . (4)

The most important terms include effective Zeeman field
couplings with coefficients C j

z , transverse (spin-exchange) in-
teractions with strengths C jk

+−, and longitudinal interactions
with strengths C jk

zz . All the interaction coefficients C have units
of energy (we express the energy in units of h × Hz, with
Planck’s constant h set to unity). The non-spin-conserving
terms with coefficients C j

+, C jk
+z, and C jk

++ have been included
for completeness, but they typically have negligible impact
on dynamics because they correspond to highly off-resonant
processes. The constant term

∑
j C j

I merely shifts the energy
reference and will be omitted in subsequent discussions.

The coefficients in Eq. (4) are obtained by evaluating the
two-body interaction Hamiltonian

Ĥ ( j,k)
2 = ĥ( j) + ĥ(k) + V̂ ( j,k)

for each pair of atoms ( j, k), restricting it to the subspace of
effective spin states and extracting the effective interaction
coefficients from its matrix elements.

The procedure for each ( j, k) is as follows: We build an ex-
tensive basis of pair states, B( j,k)

2 = {|ψ〉( j) ⊗ |ψ ′〉(k)}, where
each state is a tensor product of one-body eigenstates of ĥ( j)

and ĥ(k). This basis is partitioned into two subspaces: the spin
subspace P ( j,k)

2 , comprising the four states

P ( j,k)
2 = {|↑ j↑k〉, |↑ j↓k〉, |↓ j↑k〉, |↓ j↓k〉},

or their equivalents for different species combinations; and the
complementary subspace Q( j,k)

2 , containing all other possible
pair states. For computational feasibility, we limit Q( j,k)

2 to a
selected subset, typically approximately 104 states with ener-
gies and quantum numbers close to those in P ( j,k)

2 . We express
the full two-body Hamiltonian,

Ĥ ( j,k)
2 = ĥ( j) + ĥ(k) + V̂ ( j,k),

as a matrix in the basis B( j,k)
2 , calculating all matrix ele-

ments directly using the PAIRINTERACTION package. We then

apply the Schrieffer-Wolff transformation to obtain the effec-
tive Hamiltonian Ĥ ( j,k)

2,eff , which is confined to the subspace

P ( j,k)
2 but incorporates the perturbative effects arising from the

P ( j,k)
2 ↔ Q( j,k)

2 couplings. The Schrieffer-Wolff transforma-
tion is performed using the procedure described in Ref. [62].

The Schrieffer-Wolff transformation is equivalent to per-
turbatively expanding an effective Hamiltonian, by treating
the diagonal blocks P ( j,k)

2 ↔ P ( j,k)
2 and Q( j,k)

2 ↔ Q( j,k)
2 of

Ĥ ( j,k)
2 as the unperturbed Hamiltonian, and the off-diagonal

block P ( j,k)
2 ↔ Q( j,k)

2 as the perturbation. Therefore, for
|p〉, |p′〉 ∈ P ( j,k)

2 , the matrix elements of Ĥ ( j,k)
2,eff are given by

[62]

〈p|Ĥ ( j,k)
2,eff |p′〉 = δp,p′Ep + 〈p|V ( j,k)|p′〉

+
∑

|q〉∈Q( j,k)
2

[
〈p|V ( j,k)|q〉〈q|V ( j,k)|p′〉

2

×
(

1

Ep − Eq
+ 1

Ep′ − Eq

)]

+ O([V ( j,k)]3), (5)

where the sum over |q〉 includes all the pair states |q〉 ∈ Q( j,k)
2 .

Eq = 〈q|(ĥ( j) + ĥ(k) )|q〉 is the sum of single-particle energies
of the states comprising |q〉. Note that 〈p|V ( j,k)|p′〉 is the
first-order dipolar contribution which falls off with distance
as 1/R3, while the second-order contribution constitutes the
van der Waals interaction that falls off as 1/R6.

The obtained effective Hamiltonian [Eq. (5)] can be sepa-
rated into a one-body component and an effective two-body
interaction, V̂ ( j,k)

eff :

〈p|Ĥ ( j,k)
2,eff |p′〉 = δp,p′Ep + 〈p|V̂ ( j,k)

eff |p′〉,
and the total effective spin Hamiltonian in Eq. (4) can be
expressed as

Ĥeff =
N∑

j=1

ĥ( j) +
∑
j<k

V̂ ( j,k)
eff . (6)

All the effective spin interaction coefficients can be
therefore calculated from the appropriate interaction matrix
elements:

C j
z = 〈↑ j |ĥ( j)|↑ j〉 − 〈↓ j |ĥ( j)|↓ j〉

+
N∑

k �= j

U jk
↑↑ + U jk

↑↓ − U jk
↓↑ − U jk

↓↓
2

, (7)

C j
+ =

N∑
k �= j

〈↑ j↑k|V̂ ( j,k)
eff |↓ j↑k〉 + 〈↑ j↓k|V̂ ( j,k)

eff |↓ j↓k〉
2

, (8)

C jk
+− = 〈↑ j↓k|V̂ ( j,k)

eff |↓ j↑k〉, (9)

C jk
++ = 〈↑ j↑k|V̂ ( j,k)

eff |↓ j↓k〉, (10)

C jk
+z = 〈↑ j↑k|V̂ ( j,k)

eff |↓ j↑k〉 − 〈↑ j↓k|V̂ ( j,k)
eff |↓ j↓k〉, (11)

C jk
zz = U jk

↑↑ − U jk
↑↓ − U jk

↓↑ + U jk
↓↓, (12)
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where |↑ j〉, |↓ j〉 stand for the CC spin states |⇑〉, |⇓〉 or the
CE spin states |↑〉, |↓〉, depending on the spin species assigned
to atom j. The coefficients U are the diagonal interaction
elements U jk

σ,σ ′ = 〈σ jσ ′k|V̂ ( j,k)
eff |σ jσ ′k〉.

Accurate spin system simulation requires that the spin sub-
space P jk

2 remains effectively decoupled from the residual
subspace Q jk

2 . Otherwise, the spin subspace is not closed
and the atoms will not behave as two-level systems, caus-
ing simulation errors. In our calculations, we verify this
condition in the following way: we diagonalize the full
two-body Hamiltonian Ĥ ( j,k)

2 and verify the overlap of each
eigenstate with the spin subspace P ( j,k)

2 . For each eigen-
state |�〉, this overlap is defined as

∑
|p〉∈P ( j,k)

2
|〈p|�〉|2. We

define a measure κ ( j,k) as the fourth-largest overlap value
among all eigenstates. If κ ( j,k) ≈ 1 for all j, k, the requirement
is satisfied.

Although κ ( j,k) does not directly quantify simulation fi-
delity over time, it serves as a quantitative indicator which
allows comparing different parameter sets from that perspec-
tive. Roughly, 1 − κ ( j,k) can be interpreted as the probability
of a single spin pair experiencing leakage during one charac-
teristic period of evolution. For an ensemble of N ≈ 10 atoms,
heuristic estimates suggest that maintaining all κ ( j,k) � 0.99
is necessary to keep the probability of one or more error per
period below 10%. For larger systems, better values of κ are
necessary.

Due to the complexity of the Rydberg atom spectrum,
predicting κ ( j,k) in advance is difficult and its value can
greatly fluctuate as the experimental parameters are adjusted.
In particular, at certain values of Edc, κ ( j,k) may be lowered
by field-induced resonances between spin and non-spin-pair
states. We find that the most significant contribution to spin
subspace contamination comes from the doubly elliptical state
|n′′E±〉|n′′E±〉 mixing with nonspin states, particularly due to
its resonances with certain states of the form |n′′C±〉|n′′EE±〉
(where |n′′EE〉 designates a state with |m�| = n′′ − 3). In
general, κ ( j,k) can be enhanced by increasing interatomic dis-
tances and decreasing n in order to weaken the couplings and
increase the level spacing.

B. Example values of effective spin coefficients

In the following sections, we analyze example values of the
spin interaction coefficients C+−,Czz, as well as the effective
magnetic fields Cz acting on individual spins. We focus on
their dependence on the interatomic angle θ and external field
Edc. We exclude the coefficients C+, C++, and C+z from this
analysis, as they correspond to highly off-resonant processes
that have negligible impact on the system dynamics. (We
have performed example dynamics calculations for realistic
system parameters and initial states, and found that setting
these coefficients to zero has no visible effect.) To stream-
line our demonstration, we choose one specific assignment of
effective spin states, corresponding to the scheme where CE
spin states have quantum numbers n′, n′ + 2. We define the
CC spin states as

|⇑〉 ≡ |55C−〉, |⇓〉 ≡ |56C−〉,

and define the CE spin states as

|↑〉 ≡ |71C+〉, |↓〉 ≡ |73E+〉.
For this choice of states, the CC and CE transition energies are
similar at zero field, making it easy to minimize the Förster
defect with small fields. We believe that the results below are
universal across different choices of quantum numbers n, n′.

The below interaction coefficients have been obtained by
calculating the Hamiltonian Ĥ2,eff for each given θ, Edc. For
each tested value of Edc, the magnetic field B is tuned to Bres,
the value that minimizes the Förster defect, to make the results
more experimentally relevant. We have checked that setting B
to different values does not qualitatively alter our findings.

Throughout this analysis, we fix the azimuthal angle φ

to zero and the interatomic distance to | �Rj − �Rk| = 7 µm.
The φ = 0 assumption guarantees that all coefficients are
real (we do not consider the effects of complex interaction
coefficients in this paper). For our configuration, the chosen
distance 7 µm makes the dipolar interactions fairly strong,
i.e., on the order of MHz. The expected radiative lifetime
for N atoms in circular states (i.e., time until the radiative
decay of one of the atoms) is on the order of ≈(10−2/N ) s, so
the MHz-level interaction allows for many evolution cycles
within the system’s operational lifetime. On the other hand,
for this interaction strength the spin subspace still remains
largely isolated from nonspin states, and we find κ � 0.988
across all cases considered. While not perfect, this level of iso-
lation suggests that leakage effects remain limited, allowing
for a substantial number of evolution cycles before significant
decoherence occurs.

In the figures, we present interaction coefficients for
0 � θ � π/2. However, the full angular dependence for
0 � θ � 2π can be inferred by noting that the magnitudes of
the coefficients are symmetric about multiples of π/2.

1. Transverse (spin-exchange) interactions

We start by examining the spin-exchange coefficient C+−,
which is shown in Fig. 1 as a function of θ and Edc, for
different combinations of spin species.

For a pair of CC spins [Fig. 1(a)], the coefficient C+− is
simply given by the first-order dipolar interaction, i.e., the ma-
trix element 〈⇑⇓ |V̂ ( j,k)|⇓⇑〉. Since the total m� of the atom
pair remains unchanged in the exchange, C+−(θ ) depends on
the angle as (1 − 3 cos2 θ ) and hence vanishes at the “magic
angle” θm ≈ 0.304π . Furthermore, C+− is unaffected by the
electric field, since the composition of circular states |⇑〉, |⇓〉
is largely insensitive to Edc. Second- and higher-order dipolar
contributions are negligible, because there are no pair states
that could act as a resonant intermediate state between |⇑⇓〉
and |⇓⇑〉.

For two CC spins, the magnitude of C+− is proportional
to the square of the transition matrix element |nC±〉 ↔
|(n + 1)C±〉, and hence it scales as n4. In our configuration,
C+− reaches values on the order of 10 MHz.

For the spin exchange between two CE spins [Fig. 1(b)],
the situation is more intricate. Using |n′C〉 and |(n′ + 2)E〉
as the spin states |↑〉, |↓〉 allows a wider range of higher-
order dipolar couplings. In particular, the two pair states |↑↓〉
and |↓↑〉 can be coupled through intermediate states with
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FIG. 1. Effective spin-exchange coefficients C+− for two atoms
as a function of interatomic angle θ and electric field Edc. The inter-
atomic distance is set to |R| = 7 µm. (a) C+− for interactions between
two CC atoms; curves for different Edc overlap due to negligible
dependence on Edc. (b) C+− for interactions between two CE atoms.
(c) C+− for interactions between CC and CE atoms. In all cases, the
magnetic field B is set to the value Bres that minimizes the Förster
defect. For the five used values of Edc (6, 8, 10, 11, 13 V/cm), the
values used for Bres are respectively 784.07 G, 727.82 G, 678.36 G,
656.33 G, 617.97 G.

quantum numbers (n′ + 1), (n′ + 1). As a result, C+− for CE
spins includes strong higher-order couplings that modify its
angular dependence. Furthermore, in our configuration one
of the intermediate states, |(n′ + 1)C, (n′ + 1)C〉, becomes
Stark-resonant with |↑↓〉 for Edc ≈ 11 V/cm. Hence the shape
of C+− undergoes a particularly strong change as the electric
field is tuned through this value. These higher-order couplings
and Stark resonances make C+− highly sensitive to the electric
field, and this allows flexible tuning of its angular dependence
C+−(θ ). In particular, adjusting Edc allows us to modify the
“magic angle” θm at which C+−(θm) = 0.

The magnitude of C+− for two CE spins is still mainly
dictated by the first-order dipolar coupling. This coupling is
proportional to the square of the |n′C〉 ↔ |(n′ + 2)E〉 transi-
tion matrix element, and hence scales only as (n′)3. Therefore
the spin exchange is much weaker than the CC-CC exchange.
In our configuration, it is on the order of ≈10 kHz.

For CC-CE exchange [Fig. 1(c)], C+− is again given
by the first-order dipolar interaction 〈⇓↑|V̂ ( j,k)|⇑↓〉. The
second- and higher-order contributions are negligible, due
to the lack of suitable pair states that are resonant with
both |⇑↓〉 and |⇓↑〉 (even if |⇑↓〉, |⇓↑〉 are matched in
energy via external fields, other pair states |q〉 are still far
in energy from |⇑↓〉, |⇓↑〉). The C+− magnitude is now
a product of strong |nC〉 ↔ |(n + 1)C〉 and weak |n′C〉 ↔
|(n′ + 2)E〉 couplings. Hence it scales as n2(n′)3/2, and falls
between the values observed for the CC-CC and CE-CE
cases. In our configuration, it reaches values on the order of
1 MHz. Additionally, the magnitude is dependent on Edc due
to the strong coupling of the electric field to the elliptical
states.

Notably, for CC-CE spin exchange, the angular depen-
dence of C+−(θ ) can be tailored by selecting different values
of m� for the effective spin states. For example, in our configu-
ration, the process |⇑↓〉 ↔ |⇓↑〉 changes the total m� by two.
Hence the matrix element 〈⇓↑|V̂dd |⇑↓〉 has the form ∝ sin2 θ

and the spin-exchange interaction vanishes at θm = 0.

FIG. 2. Effective interaction-induced energy shifts U for differ-
ent effective spin-pair states, as a function of θ and Edc. The magnetic
field B is set to Bres and the interatomic distance is 7 µm. (a) U
coefficients for two CC atoms: U⇑⇑, U⇑⇓, U⇓⇓ (with U⇓⇑ = U⇑⇓
omitted). (b) U coefficients for two CE atoms: U↑↑, U↑↓, U↓↓ (with
U↓↑ = U↑↓ omitted). (c) U coefficients for a CC and a CE atom: U⇑↑,
U⇑↓, U⇓↑, U⇓↓.

2. Effective energy-shift terms U

Next, we consider the diagonal terms Uσσ ′ , which represent
the interaction-induced energy shifts of specific effective spin
states |σ, σ ′〉. These “U coefficients” are crucial, as they make
up the longitudinal interaction Czz and affect the local effective
Zeeman fields C j

z . Figure 2 shows the Uσσ ′ coefficients for
different combinations of spin species.

We first consider the coefficients U for two CC spins
[see Fig. 2(a)]. Each of these coefficients can be broken
down into two main parts. The first is the first-order dipolar
interaction between the two atoms, proportional to the field-
induced permanent dipole moments of circular states. In our
configuration, this contribution is typically on the order of
between 10 and 100 kHz. The second part is the second-
order contribution, involving the coupling of the spin state
|σ, σ ′〉 to itself via intermediate nonspin states |q〉. Usually,
just one or two states |q〉 dominate this coupling. For ex-
ample, the state |⇑⇑〉 = |nC, nC〉 is most strongly coupled
to |n + 1C, n − 1C〉 and |n − 1C, n + 1C〉. These two states
dominate the second-order contribution because they are
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energetically close to |⇑⇑〉 (since the single-atom differences
in n compensate each other) and additionally benefit from
strong C → C couplings. The total second-order contribution
overwhelms the first-order term, and imparts the overall shape
∝(1 − 3 cos2 θ )2 to U⇑⇑(θ ). For U⇓⇓ the situation is analo-
gous. For U⇑⇓, however, there is only one suitable nonspin
state of this kind: |⇑⇓〉 = |nC(n + 1)C〉 couples strongly only
to |(n − 1)C(n + 2)C〉. Primarily for this reason, U⇑⇓ = U⇓⇑
is significantly smaller that U⇑⇑,U⇓⇓.

For two CE spins [see Fig. 2(b)] the situation is simi-
lar; once again, second-order couplings dominate, and the
resulting couplings give the coefficients U a shape close to
∝(1 − 3 cos2 θ )2. However, there are several important dif-
ferences. First, and most obviously, the resulting dipolar
contributions are stronger by a factor of ≈(n′/n)8 than for
the CC case, because of the scaling of the involved tran-
sition dipole moments. Second, the coefficient U↑↓ has not
one, but two nonspin states |q〉 contributing strongly to the
second-order term: |↑↓〉 = |n′C(n′ + 2)E〉 couples strongly to
|(n′ + 1)C(n′ + 1)E〉 and |(n′ − 1)C(n′ + 3)E〉. This is thanks
to the fact that we are using both circular and elliptical states:
it means the nonspin subspace has a larger variety of pair
states which can couple strongly and resonantly to |↑↓〉. How-
ever, for these two |q〉 the corresponding energy differences
have opposite signs, and the net coefficient U↑↓ has the oppo-
site sign to U↑↑ and U↓↓. This sign reversal will turn out to
have significant effects for the spin-spin interactions.

Finally, we examine the interspecies CC-CE interaction
[Fig. 2(c)]. This time, the second-order couplings are much
weaker. This is because the involved atom states have sig-
nificantly different principal quantum numbers n, n′, which
reduces the resonance with the nonspin states. For exam-
ple, for the state |⇑↑〉 = |nCn′C〉, the strongest second-order
contributions involve the two states |(n ± 1)C(n′ ∓ 1)C〉.
However, because n, n′ have very different values, the single-
particle energy differences do not compensate. The resulting
off-resonance between pair states greatly reduces the second-
order contribution. Additionally, the two states contribute with
opposite signs but very similar magnitudes, and their con-
tributions nearly cancel out. The net result is that all the
coefficients U for CC-CE atom pairs are dominated by the
first-order coupling. The resulting U coefficients have the
shape U (θ ) ∝ (1 − 3 cos2 θ ) characteristic for diagonal dipo-
lar interaction, especially at higher Edc, where the interaction
between permanent dipoles is stronger. Additionally, all four
U now have similar magnitudes and signs. This will be crucial
for the atomic interaction.

3. Local Zeeman field acting on individual spins

We now analyze the local effective Zeeman field C j
z acting

on individual spins. C j
z has been given earlier in Eq. (7) as

C j
z = (〈↑ j |ĥ( j)|↑ j〉 − 〈↓ j |ĥ( j)|↓ j〉) (13a)

+
∑
k �= j

U jk
↑↑ + U jk

↑↓ − U jk
↓↑ − U jk

↓↓
2

. (13b)

The first term [Eq. (13a)] corresponds to the energy dif-
ference between the two n manifolds corresponding to pseu-
dospin states (n, n + 1 or n′, n′ + 2). For Rydberg states this

FIG. 3. The interaction shift of C j
z [Eq. (13b)] for the atom j,

from one other atom placed at a distance of 7 µm. (a) Contribution
for a CC atom, from a nearby CC atom. (b) Contribution for a CE
atom, from a nearby CE atom. (c) Contribution for a CC atom, from
a nearby CE atom.

difference is on the order of 10 GHz. It is usually the largest
energy scale in the system. In particular, it dictates the energy
cost of changing the system’s total spin. Our calculations (not
shown here) indicate that the non-spin-conserving coefficients
C+, Cz+, and C++ are much smaller than this energy scale.
Specifically, C++ for each spin species combination is com-
parable in magnitude to C+− (up to approximately 10 MHz),
while C+ and Cz+ reach at most 1 MHz. Therefore the non-
spin-conserving processes are highly off-resonant and have a
negligible effect on the system’s dynamics.

The second term [Eq. (13b)] is an interaction-induced
shift from neighboring atoms. This term can influence spin-
exchange dynamics if it varies across different atoms by
amounts on the order of C+−. To examine this possibility, in
Fig. 3 we plot the value of Eq. (13b) for a single pair of atoms
j, k at angle θ . This gives the idea of how much C j

z may vary
depending on the surroundings of atom j.

The resulting contributions to C j
z reflect the magnitude of

their comprising coefficients U . For atom j of species CC, a
single CC neighbor [Fig. 3(a)] or a CE neighbor [Fig. 3(c)]
induces a shift in C j

z ranging from 0 to 150 kHz. Considering
that C+− for CC-CC interactions is ≈10 MHz, this shift is
comparatively small. Therefore, in a spatially uniform atom
distribution, where each atom sees roughly the same number
of neighbors, fluctuations in Cz across different atoms will be
small and will have minimal effect on spin exchange.

For atom j of species CE, a single CC neighbor induces a
C j

z shift up to 150 kHz [not pictured in Fig. 3], similarly as the
opposite case. A single CE neighbor [Fig. 3(b)] induces a shift
in C j

z up to 1 MHz. These shifts are significantly larger than
the spin-exchange energy scales C+− for CE-CE interactions
(≈10 kHz). This implies that in a system with CE atoms, vari-
ations in C j

z could inhibit spin-exchange interactions between
these atoms, leading to localization effects.

4. The longitudinal interaction coefficients

The longitudinal interaction coefficients Czz, defined by

C jk
zz = U jk

↑↑ − U jk
↑↓ − U jk

↓↑ + U jk
↓↓, (14)

are depicted in Fig. 4 for various spin species combinations.
For CC-CC interactions [Fig. 4(a)] and CE-CE interac-

tions [Fig. 4(b)], the angular dependence of Czz reflects that
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FIG. 4. Effective longitudinal spin interaction coefficients Czz

between two atoms as a function of θ and Edc. The magnetic field
B is set to Bres and the interatomic distance is 7 µm. (a) Czz for two
CC atoms. (b) Czz for two CE atoms. (c) Czz for interactions between
CC and CE atoms.

of the underlying U coefficients, and it is approximately
∝(1 − 3 cos2 θ )2 for both CC-CC and CE-CE interactions.
However, the magnitudes differ starkly. For CC spins, Czz

is generally small compared with C+−. Therefore, the CC-
CC spin interactions are approximately of Heisenberg type
(C+− � Czz). For CE spins, Czz greatly exceeds C+−; this is
both due to the larger U values from the higher n′, and due
to the opposite signs of U jk

↑↓,U jk
↓↑ vs U jk

↑↑,U jk
↓↓, which cause

all terms in Eq. (14) to add constructively. Therefore, two CE
spins exhibit Ising-like interactions (Czz � C+−).

For interactions between CC and CE spins [Fig. 4(c)],
Czz is very small. This is because the contributions from U
coefficients nearly cancel out, given their similar magnitudes
and signs. In our configuration, the resulting Czz is on the
order of 10 kHz, which can be essentially neglected when
compared with other energy scales in the system. Therefore,
the CC-CE spin interactions are ultimately of Heisenberg type
(C+− � Czz).

5. Summary of the results

Let us summarize the characteristic properties of the inter-
actions between CC and CE spins.

The three combinations of interacting species correspond
to different interaction types. CC-CC interactions feature
strong transverse interaction (S+S−) and weak longitudinal
interaction (SzSz), oppositely to CE-CE interactions, which
exhibit weak transverse interaction and strong longitudinal
interaction. The CC-CE interspecies interactions have a mod-
erately strong transverse component and a near-vanishing
longitudinal component. Therefore, in general, CC-CC and
CC-CE interactions are of Heisenberg-like type (C+− � Czz)
while CE-CE interactions are of Ising-like type (C+− � Czz).
Additionally, unlike for CC spins, the spin exchange between
CE spins can be strongly affected by local shifts of C j

z caused
by interactions with the local environment.

It is worth noting that, beyond spin model simulations, this
setup offers intriguing possibilities for simulating Hubbard
lattice models. A system of fixed 1/2-spins can be mapped
onto that of hardcore bosons hopping between lattice sites
[63]. In this picture, the atoms represent lattice sites, and the
two “pseudospin levels” instead represent different states of a
lattice site—occupied or vacant. The effective spin-exchange

between two atoms is reinterpreted as the hopping of a particle
between sites. The “two-species” approach allows us to rep-
resent two distinct sublattices, such that the couplings are of
different character within and between each sublattice. This
allows us to explore variants of topological lattice models,
such as the Su-Schrieffer-Heeger (SSH) model [64], the Rice-
Mele model [65], the Hofstadter-Harper model [66], and the
Kitaev model [67].

Integrating both spin species in a single simulated model
provides significant benefits over a single-species setup,
both for spin models and Hubbard lattice models. First, a
two-species approach offers greater flexibility in designing
interactions between different parts of the system. For ex-
ample, it allows us to easily divide a simulated lattice model
into two sublattices with independent properties. Second, the
broader range of “magic angles” accessible with the two-
species setup gives more flexibility in designing the geometry
of the simulator. For example, a spin chain with suppressed
transverse interactions can be achieved using a line of CC
spins set at the specific angle θ = 0.304π , but it can also be
realized with CE spins set at almost any polar angle, enabling
new designs for the simulation array. Third, the CE spins
allow more precise tuning of Ising-like interactions, which for
CC spins are restricted to a narrow range near θ = 0.304π

and are highly sensitive to atom positioning. These combined
advantages make the dual-species approach more robust and
versatile.

IV. EXAMPLE SIMULATED SYSTEMS

To illustrate the potential applications of our setup, we
describe two examples of realizable system geometries. These
examples also demonstrate the advantages of combining the
CC and CE spins, compared with CC spins alone.

As the first example, we present a “double lattice” model,
illustrated in Fig. 5. This model consists of spins arranged
in a periodic two-dimensional (2D) square lattice (lattice
“A”), with an additional spin at the center of each unit cell,
forming a secondary lattice “B.” Such “double lattice” con-
figurations find application in multiple branches of physics,
such as research on photonic crystals (nanostructures with
spatially periodic dielectric functions) [68] or multilayer ma-
terials [69,70]. In the presented system, spins within each
sublattice (“A” and “B”) interact with their four nearest
neighbors with equal magnitudes of couplings, although the
interaction strength differs between the two sublattices. Fur-
thermore, the model includes “A”-“B” couplings that are
spatially anisotropic, acting exclusively along one direction
within a unit cell.

The model in Fig. 5 can be readily engineered using a
combination of CC and CE species by assigning different
spin species to the two lattices and arranging the atoms into
a square lattice structure at a π/4 angle relative to the quan-
tization axis. Consequently, the nearest-neighbor interactions
within the same lattice have identical magnitudes in all four
directions, while the nearest-neighbor interactions between
different lattices vanish for atom pairs set at the magic angle
θ = 0. This system would be difficult to engineer with CC
spins alone because it would be challenging to simultaneously
achieve interlattice interactions that only act in one direction
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FIG. 5. Example geometry realizable with the two-species ap-
proach: A two-dimensional atom arrangement consisting of two
interleaved square lattices, labeled “A” and “B,” each containing
atoms of opposite spin species. The blue circles and red hexagons
stand for atoms of the two different spin species, CC and CE (the
specific correspondence between shapes and species is arbitrary).
When the quantization axis (axis Z) is oriented at an angle π/4
relative to the unit cell sides, the interactions between neighboring
atoms within each lattice, shown as blue solid lines (lattice “A”)
and red long-dashed lines (lattice “B”), become uniform. However,
the interlattice interactions (green short-dashed lines) display spatial
anisotropy, only acting along one direction.

and within-lattice interactions that act with equal strength in
all directions.

Another example is shown in Fig. 6(a). This model rep-
resents a spatially periodic 2D structure, composed of a pair
of Ising chains labeled “A” and “B.” Each chain features
uniform SzSz nearest-neighbor couplings, but with different
interaction strength for chains “A” and “B.” Additionally, each
particle jA in chain “A” undergoes spin-exchanging interac-
tions with its opposite-chain partner jB and its two nearest
neighbors, ( j ± 1)B (interactions with further neighbors are
smaller by about an order of magnitude, and thus are typically
unimportant). This system can be realized using CC and CE
spins in the following manner: by assigning different spin
species to each chain, aligning both chains along the magic
angle θm = 0.3041π to nullify the CC-CC spin-exchange in-
teractions, and adjusting the external electric field so that
the CE-CE spin-exchange interactions also vanish at θm. The
spin-exchanging interspecies interactions arise naturally once
the chains are placed close to each other.

Note that engineering this system using only CC spins
would pose problems. While two Ising chains could be created
by aligning them along angle θm, achieving different interac-
tion strengths for both chains would be difficult. One would
either have to use different interparticle distances in the two
chains (which would destroy the periodicity of the interchain
interactions), or use circular states with different n for the two
chains (in which case, it would not be possible to tune the
transitions into resonance, precluding spin exchange between
the chains).

By ignoring the physical positioning and treating parti-
cles jA, ( j + 1)B, ( j + 2)A, . . . as a single chain, the system
in Fig. 6(a) can be made equivalent to another model: two

FIG. 6. Example geometries realizable with the two-species ap-
proach. The blue circles and red hexagons stand for atoms of the
two different spin species, CC and CE (the specific correspondence
between shapes and species is arbitrary). (a) A two-dimensional
arrangement forming two parallel spin chains composed of dif-
ferent species, aligned along the magic angle θm = 0.3041π . This
configuration allows us to suppress spin-exchange interactions for
both CC and CE atoms, resulting in two chains with purely Ising
SzSz couplings (blue solid and red dashed lines) with differing
strengths. The particles in each chain are labeled as 1A, 2A, 3A, . . .

and 1B, 2B, 3B, . . .. The interchain interactions (green lines) are
spin-exchanging. Only the three strongest interactions—those be-
tween each atom and its three nearest neighbors of the opposite
chain—are shown. These couplings vary in strength depending on
their relative angles, indicated by distinct line styles. (b) An alternate
representation of the system in panel (a) without considering physical
positioning. The system can be viewed as two chains with alternating
sites 1A, 2B, 3A, 4B, . . . and 1B, 2A, 3B, 4A, . . .. Each chain features
spin-exchanging interactions of alternating strengths (green dashed
and dotted lines), while the two chains are coupled by Ising interac-
tions (blue solid and red dashed lines) and interspecies spin-exchange
interactions (green dash-dotted lines).

identical chains where each chain has spin-exchange inter-
actions of alternating strengths, as shown schematically in
Fig. 6(b). These chains are connected to each other by both
SzSz and spin-exchanging couplings.

The model in Fig. 6(b) can be also viewed in a dif-
ferent light by mapping the atoms to lattice sites and spin
states to site occupancy. Then, each of the two chains can
be re-interpreted as a Su-Schrieffer-Heeger (SSH) lattice, a
fundamental topological model characterized by alternating
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hopping amplitudes between even and odd sites. The system
can also be seen as a variant of the two-leg Creutz ladder,
another well-known topological system [71]. In the lattice
picture, the transverse spin interactions on each chain are
equivalent to the hopping of hardcore bosons between sites.
Meanwhile, the interchain longitudinal interactions (Ŝi

zŜ
j
z ) can

be understood as longitudinal interactions between bosons
occupying sites i, j. This can be seen by applying the map-
ping Ŝi

z → (1/2 − n̂i ), where n̂i is the operator measuring the
population on site i (〈n̂i〉 = 0, 1); in this case, the Ŝi

zŜ
j
z term

leads to effective ∝n̂in̂ j boson-boson interactions.
Note that in the Fig. 6(a) example, the relative positions of

the chains can be so engineered that particles jA, jB lie on a
line with a polar angle θ = 0. In that case, spin-exchanging
interactions between jA, jB [represented by the dash-dotted
green lines in Figs. 6(a) and 6(b)] disappear. Then, the two
SSH chains in Fig. 6(b) behave approximately as two separate
subsystems with separately conserved populations.

V. EXPERIMENTAL FEASIBILITY

A. Trapping

The implementation of the setup relies on the ability to
trap individual Rydberg atoms at specific positions. In ex-
periments using ultracold alkali-metal atoms in their ground
states, red-detuned optical tweezers are typically used to trap
the atoms at desired locations. However, these tweezers be-
come repulsive for atoms excited to Rydberg states, due to the
strong ponderomotive potential of the Rydberg electron [72].
Consequently, experiments involving Rydberg atoms require
alternative trapping methods.

Currently, the standard method of optically trapping Ry-
dberg atoms uses “bottle-beam” hollow traps. Atoms are
confined in an intensity minimum at the center of a laser
beam, which is created using a spatial light modulator [73].
In a recent experiment, this technique was successfully used
to create an array of individually trapped rubidium atoms in
circular states [52].

For alkaline-earth atoms, other trapping methods are pos-
sible. Unlike for alkali-metal atoms, the ionic core of the
alkaline-earth atom remains optically active even in Rydberg
states, due to the second valence electron remaining close to
the core. This allows us to trap circular-state atoms in conven-
tional optical tweezers, as the ionic core’s interaction with the
tweezer overpowers the contribution from the ponderomotive
potential of the Rydberg electron. Tweezer trapping has been
experimentally demonstrated for low-� Yb Rydberg states
[74] and, very recently, for circular states of Sr [53].

For elliptical states, to our knowledge, no explicit exper-
imental realizations of trapping few-atom systems have been
reported. However, the techniques developed for circular-state
trapping are likely adaptable to elliptical-state atoms with
minimal modifications.

B. Influence of motional degrees of freedom

For simplicity, we treat the atoms as fixed points through-
out this paper. However, in reality atomic motion within the
traps can significantly impact the system’s dynamics. For traps
with low frequency ω, dipole-dipole interactions between

atoms can be strong enough to excite higher motional states.
The resulting fluctuations in �Ri − �Rj can lead to entanglement
between the atomic motion and the internal-level dynamics,
equivalent to spin-motion coupling, which induces unwanted
dephasing effects. This interaction-induced motion coupling
has been demonstrated via numerical calculations for circular-
state atoms in Ref. [75].

Thermal excitations of atomic motion can cause similar
issues. Reference [54] observed significant positional oscil-
lations (up to 1 µm) in a setup with two circular-state atoms
under typical conditions (trap frequency ω = 22.8 kHz, in-
teraction strength ≈1 MHz at a distance of 13 µm, room
temperature). To mitigate these dephasing effects during
long-time evolution, our setup should operate at cryogenic
temperatures (a few µK or lower), and trap frequencies should
be as high as possible.

C. Preparing circular and elliptical states

Carrying out simulations of specific scenarios requires not
only preparing atoms in precisely fixed positions but also
rapidly and reliably preparing each individual atom in a de-
sired circular or elliptical state.

A number of methods exist that allow rapid excitation of
circular levels. One well-established approach is the adia-
batic rapid-passage method [48,76]. The atoms, driven into
low-|m�| states, are subjected to a radio-frequency ac field,
combined with parallel magnetic and electric fields. Under the
combined effects of these fields, the atomic spectrum exhibits
an avoided crossing, connecting the low-|m�| state to a circular
state of the same n. This crossing can then be traversed by
adiabatically tuning the electric field.

A faster variant of the adiabatic rapid-passage method has
been proposed as well [77]. This variant exploits the fact
that, for higher �, transitions between states with successive
� are all of nearly the same frequency. In the procedure, the
electric field is kept constant, at a value where this transition
frequency is on resonance with the chosen radio-frequency
radiation. A radio-frequency pulse is then applied for a precise
time, driving Rabi oscillations between the initial state (low
|m�|) and the circular state. After a π pulse, the population is
coherently transferred into the circular state.

Another well-established approach is the crossed-fields
method. Here the atoms are initially placed in perpendicularly
crossing electric and magnetic fields and excited into m� = 0
states of the desired n. The electric field is then adiabatically
switched off, while the transverse magnetic field remains in
place. This process transfers the atoms into circular states
|nC〉. Note, however, that in our setup this method poses
complications: once the circular state preparation is finished,
it is still necessary to turn on an electric field parallel to the
magnetic field, which needs to be carefully done to avoid
disturbing the circular excitations [50,78,79].

Other fast circularization methods involve using quan-
tum control theory, i.e., designing specially shaped radio-
frequency pulses that circularize the atomic array with optimal
speed and fidelity [80,81].

The excitation of elliptical states, which are a key aspect
of our setup, is a less developed topic compared with circular
state excitation. However, several plausible approaches exist.
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A straightforward method is to produce atoms in |(n − 1)C〉
states, then transfer them to |nE〉 states via a π -polarized
microwave transition. It is also likely that existing circulariza-
tion schemes can be adapted to produce elliptical states. For
example, |nE〉 states can be produced with a high fidelity via
optimally shaped pulses [82].

Another possibility is a proposed “quantum Zeno dynam-
ics” scheme [56]. The atom is prepared in an |nC〉 state,
then a radio-frequency field is applied with a frequency equal
to the transition between the different high-� levels |n, �〉.
This makes the atom state evolve back and forth through the
entire ladder of Rydberg levels. By applying a microwave
transition to couple a level |n, �′〉 to |n − 1, �′〉, splitting that
level into two, the atom state is “blocked” from evolving past
|n, �′〉. In this way, one could prepare the elliptical state for
given n, or even a linear combination of circular and elliptical
states.

D. Atom-resolved state preparation

Another key requirement of our proposal is the ability to
address individual atoms in the setup, in order to initialize
each atom into the desired state. Most methods of circular
state preparation rely on radio-frequency radiation, which has
a large wavelength (on the order of millimeters or above) and
thus cannot be locally addressed in systems of Rydberg atoms,
where interparticle distances are measured in microns.

Several proposed approaches address this difficulty by
using optical-frequency beams that are addressable on the
micron scale. The proposals in Refs. [58,83] use super-
positions of copropagating optical Laguerre-Gauss beams,
which can drive transitions with a tunable frequency (even
nonoptical) and very large angular-momentum transfer. This
enables direct excitation of individual atoms from low-�
Rydberg states to circular states. Another approach [84]
uses optical-frequency addressing beams during the initial
Rydberg excitation, to temporarily make specific atoms off-
resonance with the excitation beam.

Another possibility opens for alkaline-earth Rydberg
atoms. In these atoms, the circular state of the valence electron
experiences an energy shift when the ionic atom core is op-
tically excited. This allows optical-wavelength, site-resolved
control of the circular states [85,86].

Other approaches leverage ancilla atoms to utilize the Ryd-
berg blockade effect, where interactions between two Rydberg
atoms shift the energy levels, making simultaneous excitation
off-resonant and preventing the excitation of both atoms at
once. For example, Ref. [55] describes a simple scheme where
a two-atom |⇑⇓〉 state is prepared by using a third ancilla
atom. Depending on its position, the ancilla induces an angle-
dependent Rydberg blockade interaction with a nearby atom,
which thus becomes off-resonant with the excitation field. By
moving the ancilla, the two atoms can therefore be excited into
the desired states one at a time.

For certain system geometries, it is possible to use more
specialized methods of initial-state preparation. For example,
in a spin chain of regularly spaced atoms, one can use optical
tweezers to temporarily displace the neighbors of the atom of
interest. This shifts the resonant frequencies of the atom, and
its state can then be controlled individually [87].

E. State detection

Tracking the simulator state requires state detection on
the level of individual atoms, with the ability to distinguish
different circular and elliptical states. Optical detection allows
us to resolve the presence of atoms on individual sites, but in
general it does not allow discerning different internal levels.
It can, however, be combined with other methods, which
rely on removing atoms of specific levels from the array,
followed by optical detection to find out which atoms are
now missing. This allows a simple way of site-resolved state
detection [52].

A frequent approach to many-body state readout is the
field-ionization method: the electric field is gradually in-
creased to cross the ionization thresholds of successive atomic
levels. By counting the emitted ions as a function of the
ionizing field, and matching specific atomic states to their
predicted threshold fields, populations of individual states can
be measured. This method is widely applied experimentally to
detect circular Rydberg states [48,49,51,59].

By itself, the ionization method allows us to measure the
overall population, but not to detect the states on selected sites.
This limitation can be overcome, e.g., by selectively ionizing
atoms in one of the states, then imaging the atomic array to
identify which atoms were ionized [18,52]. Another limitation
of the ionization method is that it generally cannot distinguish
|nC〉 and |nE〉 states, which have very similar threshold ion-
ization fields [51]. However, this issue can also be overcome,
e.g., by first transferring the elliptical-state atoms to a level
from a different energy manifold [56,88].

Other atom-resolved state detection methods are also pos-
sible. For instance, nondestructive state measurements can use
ancilla atoms that become resonant or nonresonant with a
driving field, depending on the state of a nearby array atom
[58].

Specialized methods of atom-resolved state detection can
also be applied in specific configurations. For example,
Ref. [87] considers a one-dimensional spin chain trapped in
a lattice, bordered on both ends by “plug” beams. To detect
the state of the chain atom-by-atom, the lattice is switched
off and the plug beam is slowly reduced, expelling atoms
one by one from the right-hand end of the chain. This allows
us to individually read out the atomic states, e.g., by field
ionization.

For alkaline-earth Rydberg atoms, another detection
method is available, which makes use of the electrostatic
coupling between the two valence electrons. The ionic core
electron can be driven into a fluorescing state, whose excita-
tion probability depends on the state of the Rydberg electron.
By measuring the fluorescence across the system, it is then
possible to measure the Rydberg electron state in a quantum-
nondestructive way [85].

F. Maximum lifetimes

Radiative lifetimes of Rydberg atoms are typically the
dominant limitation of the simulation time. Long radia-
tive lifetimes are the largest advantage of using circular
states. Circular states have only one dipole-allowed pathway
for spontaneous emission: the σ -polarized photon transition
|nC〉 → |(n − 1)C〉. Neglecting the blackbody radiation, the
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circular state radiative lifetime scales as n5 (typically being
on order of 10−2 s in cryogenic environments) [44]. For an
N-atom system, the overall system lifetime, limited by spon-
taneous emission, is therefore on the order of 10−2/N s. The
lifetime should be considered in light of the spin-exchange
timescale 1/C jk

+−. Usually, throughout the simulation dura-
tion, one would want to simulate at least 102 spin-exchange
periods. Assuming that C jk

+− are generally on the order of
105 Hz (as is the case in the example system shown in
Sec. III), this means that for N ≈ 10 systems the circu-
lar state lifetime is sufficient for at least 102 spin-exchange
periods.

The circular state lifetime can be further extended by plac-
ing atoms in a small cavity (on the order of a few millimeters)
which does not support photon modes with a wavelength
corresponding to the spontaneous emission. Theoretical cal-
culations show that such cavities can extend the radiative
lifetime of circular atoms to times ≈101 s [44,58]. A crude
“cavity,” realized by placing the atoms between two capacitor
plates, is sufficient to suppress the σ -polarized spontaneous
emission for circular states [44]. This apparatus does not help
for elliptical states because they have additional emission
pathways, including π -polarized photon emissions. However,
cavities of more sophisticated shapes can suppress also π -
polarized photon emission, extending the lifetime of elliptical
states as well [58].

Real experiments also need to contend with other sources
of decoherence, such as noise in the external fields and col-
lisions with residual background gas. [44]. As an example
from practice, in the experiment described in Ref. [51], cir-
cular n = 50 Rb atoms were prepared at 10 µK temperature.
The measured radiative lifetime was 3.7 × 10−3 s (without an
inhibiting cavity); however, additional factors, such as electric
field noise and fluctuations of the magnetic field, lowered the
overall timescale of irreversible decoherence to 2.7 × 10−4 s.
Therefore, the magnitude of these factors needs to be cal-
culated separately, depending on the specific experimental
approach.

Another factor is the stimulated blackbody absorption and
emission that occurs at nonzero temperatures. While recent
experiments have achieved radiative lifetimes of up to 10−3 s
for circular-state atoms at room temperature [51,53,89], oper-
ating at cryogenic temperatures remains preferable to further
suppress these effects and extend coherence times.

G. Stability of external fields

To maintain stable values of interaction coefficients and
Förster defects over time, precise control of stray electric and
magnetic fields is required. For the parameter sets used in our
previous examples, we have numerically checked that main-
taining the Förster defect below 50 kHz requires stabilizing
the electric field to within 10−3 V/cm, and the magnetic field
to within 10−2 Gauss. These accuracy levels are achievable
in experimental settings. Electric fields can be measured and
compensated with an accuracy of approximately 10−5 V/cm
[90,91], while magnetic fields can be controlled with high
precision, even down to about 10−5 Gauss [92,93]. Hence this
level of field stability is experimentally feasible.

VI. CONCLUSION

In this paper, we have presented a comparative analysis of
two methods for simulating spin-1/2 particles using Rydberg
states. The first method uses two circular states to represent
the spin states, as used in previous proposals, while the second
introduces a novel scheme by encoding the spin states in a cir-
cular state and an elliptical state. These two approaches result
in two distinct “spin species” (named “CC” and “CE” respec-
tively) with different intra- and interspecies spin interactions.
We focused on one scheme, where the CE spin is simulated
by two states with principal quantum numbers n′, n′ + 2;
we found that the CC-CC and CC-CE interactions are typi-
cally Heisenberg-like, with strong transverse couplings, while
CE-CE interactions are more Ising-like, dominated by longi-
tudinal couplings. Combining these two approaches in one
setup allows us to simulate a variety of two-species spin
models, or lattice systems with two sublattices.

We have illustrated the potential applications by provid-
ing specific examples of models that could be realized using
this framework. This includes: a double lattice system with
anisotropic interactions between sublattices, and a pair of cou-
pled Su-Schrieffer-Heeger chains, both of which are relevant
to solid-state physics. The setup is experimentally feasible
in current ultracold physics laboratories, potentially allow-
ing quantum simulations of larger two- or three-dimensional
systems that are difficult to model with traditional numerical
methods.

Although our scheme is experimentally viable, certain
aspects require further refinement. The inclusion of ellipti-
cal states expands the possibilities for spin simulation, but
their preparation necessitates adapting existing techniques for
generating circular states. Additionally, the current scheme,
where the energy differences between pseudospin states
(E⇑ − E⇓ and E↑ − E↓) are on the order of 10 GHz, is not
easily used for qubit applications. For qubit processing, one
is typically interested in superpositions of up-spin and down-
spin states with specific phase differences. In the presented
scheme, the energy difference between the two spin states will
be on the order of 10 GHz, leading to phase oscillations with
periods around 10−10 s. This makes it challenging to preserve
phase information unless the system can be controlled on
nanosecond timescales. However, future developments could
mitigate this challenge. For instance, microwave dressing
could be used to equate the energies E of the pseudospin states
within one or both species (see Ref. [44] for an example).
This could be used to enable spin-non-conserving processes
or make the system suitable for qubit storage, enhancing its
prospects for quantum computing applications.
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